Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/117/9/10.1063/1.4913519
1.
1. G. Hodes, Science 342, 317 (2013).
http://dx.doi.org/10.1126/science.1245473
2.
2. H. J. Snaith, J. Phys. Chem. Lett. 4, 3623 (2013).
http://dx.doi.org/10.1021/jz4020162
3.
3. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. H. Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, Sci. Rep. 2, 591 (2012).
http://dx.doi.org/10.1038/srep00591
4.
4. J. Burschka, N. Pellet, S. J. Moon, R. H. Baker, P. Gao, M. K. Nazeeruddin, and M. Graetzel, Nature 499, 316 (2013).
http://dx.doi.org/10.1038/nature12340
5.
5. A. S. Subbiah, A. Halder, S. Ghosh, N. Mahuli, G. Hodes, and S. K. Sarkar, J. Phys. Chem. Lett. 5, 1748 (2014).
http://dx.doi.org/10.1021/jz500645n
6.
6. G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, Adv. Funct. Mater. 24, 151 (2014).
http://dx.doi.org/10.1002/adfm.201302090
7.
7. P. K. Nayak and D. Cahen, Adv. Mater. 26, 1622 (2014).
http://dx.doi.org/10.1002/adma.201304620
8.
8. H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Science 345, 542 (2014).
http://dx.doi.org/10.1126/science.1254050
9.
9. W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
http://dx.doi.org/10.1063/1.1736034
10.
10. S. D. Wolf, J. Holovsky, S. J. Moon, P. Loper, B. Niesen, M. Ledinsky, F. J. Haug, J. H. Yum, and C. Ballif, J. Phys. Chem. Lett. 5, 1035 (2014), also see the references therein.
http://dx.doi.org/10.1021/jz500279b
11.
11. A. Marchioro, J. Teuscher, D. Friedrich, M. Kunst, R. V. D. Krol, T. Moehl, M. Graetzel, and J. E. Moser, Nat. Photonics 8, 250 (2014).
http://dx.doi.org/10.1038/nphoton.2013.374
12.
12. J. Even, L. Pedesseau, J. M. Jancu, and C. Katan, J. Phys. Chem. Lett. 4, 2999 (2013).
http://dx.doi.org/10.1021/jz401532q
13.
13. F. Brivio, A. B. Walker, and A. Walsh, APL Mater. 1, 042111 (2013).
http://dx.doi.org/10.1063/1.4824147
14.
14. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338, 643 (2012).
http://dx.doi.org/10.1126/science.1228604
15.
15. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science 342, 341 (2013).
http://dx.doi.org/10.1126/science.1243982
16.
16. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, and T. C. Sum, Science 342, 344 (2013).
http://dx.doi.org/10.1126/science.1243167
17.
17. C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, Adv. Mater. 26, 1584 (2014).
http://dx.doi.org/10.1002/adma.201305172
18.
18. C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J. P. Wolf, and V. Sundstrom, J. Am. Chem. Soc. 136, 5189 (2014).
http://dx.doi.org/10.1021/ja412583t
19.
19. E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Graetzel, and F. D. Angelis, J. Phys. Chem. C 117, 13902 (2013).
http://dx.doi.org/10.1021/jp4048659
20.
20. E. Edri, S. Kirmayer, D. Cahen, and G. Hodes, J. Phys. Chem. Lett. 4, 897 (2013).
http://dx.doi.org/10.1021/jz400348q
21.
21. T. Minemoto and M. Murata, J. Appl. Phys. 116, 054505 (2014).
http://dx.doi.org/10.1063/1.4891982
22.
22. J. T. W. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. A. Webber, J. Huang, M. Saliba, I. M. Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, Nano Lett. 24, 724 (2014).
http://dx.doi.org/10.1021/nl403997a
23.
23. S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sumbce, and Y. M. Lam, Energy Environ. Sci. 7, 399 (2014).
http://dx.doi.org/10.1039/C3EE43161D
24.
24. J. Kim, S. H. Lee, J. H. Lee, and K.-H. Hong, J. Phys. Chem. Lett. 5, 1312 (2014).
http://dx.doi.org/10.1021/jz500370k
25.
25. W. J. Yin, T. Shi, and Y. Yan, Appl. Phys. Lett. 104, 063903 (2014).
http://dx.doi.org/10.1063/1.4864778
26.
26. R. Gottesman, E. Haltzi, L. Gouda, S. Tirosh, Y. Bouhadana, and A. Zaban, J. Phys. Chem. Lett. 5, 2662 (2014).
http://dx.doi.org/10.1021/jz501373f
27.
27. Y. Kutes, L. Ye, Y. Zhou, S. Pang, B. D. Huey, and N. P. Padture, J. Phys. Chem. Lett. 5, 3335 (2014).
http://dx.doi.org/10.1021/jz501697b
28.
28. Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. Meredith, Nat. Photonics 9, 106 (2014).
http://dx.doi.org/10.1038/nphoton.2014.284
29.
29. T. J. Savenije, C. S. Ponseca, L. Kunneman, M. Abdellah, K. Zheng, Y. Tian, Q. Zhu, S. E. C. I. G. Scheblykin, T. Pullerits, A. Yartsev, and V. Sundstrom, J. Phys. Chem. Lett. 5, 2189 (2014).
http://dx.doi.org/10.1021/jz500858a
30.
30. V. D'Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, Nat. Commun. 5, 3586 (2014).
http://dx.doi.org/10.1038/ncomms4586
31.
31. S. D. Stranks, V. M. Burlakov, T. Leijtens, J. M. Ball, A. Goriely, and H. J. Snaith, Phys. Rev. Appl. 2, 034007 (2014).
http://dx.doi.org/10.1103/PhysRevApplied.2.034007
32.
32. P. S. Davids, I. H. Campbell, and D. L. Smith, J. Appl. Phys. 82, 6319 (1997).
http://dx.doi.org/10.1063/1.366522
33.
33. L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, Phys. Rev. B 72, 085205 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.085205
34.
34. M. Hirasawa, T. Ishihara, T. Goto, K. Uchida, and N. Miura, Physica B 201, 427 (1994).
http://dx.doi.org/10.1016/0921-4526(94)91130-4
35.
35. F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Huttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillips, and R. H. Friend, J. Phys. Chem. Lett. 5, 1421 (2014).
http://dx.doi.org/10.1021/jz5005285
36.
36. G. Lakhwani, A. Rao, and R. H. Friend, Annu. Rev. Phys. Chem. 65, 557 (2014).
http://dx.doi.org/10.1146/annurev-physchem-040513-103615
37.
37. Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, and Y. Kanemitsu, J. Am. Chem. Soc. 136, 11610 (2014).
http://dx.doi.org/10.1021/ja506624n
38.
38. H. Oga, A. Saeki, Y. Ogomi, S. Hayase, and S. Seki, J. Am. Chem. Soc. 136, 13818 (2014).
http://dx.doi.org/10.1021/ja506936f
39.
39. E. Guillen, F. J. Ramos, J. A. Anta, and S. Ahmad, J. Phys. Chem. C 118, 22913 (2014).
http://dx.doi.org/10.1021/jp5069076
40.
40. J. S. Manser and P. V. Kamat, Nat. Photonics 8, 737 (2014).
http://dx.doi.org/10.1038/nphoton.2014.171
41.
41. J. C. Blakesley and D. Neher, Phys. Rev. B 84, 075210 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075210
42.
42. O. J. Sandberg, M. Nyman, and R. Osterbacka, Phys. Rev. Appl. 1, 024003 (2014).
http://dx.doi.org/10.1103/PhysRevApplied.1.024003
43.
43. W. J. Yin, T. Shi, and Y. Yan, Adv. Mater. 26, 4653 (2014).
http://dx.doi.org/10.1002/adma.201306281
44.
44. M. L. Agiorgousis, Y. Y. Sun, H. Zeng, and S. Zhang, J. Am. Chem. Soc. 136, 14570 (2014).
http://dx.doi.org/10.1021/ja5079305
http://aip.metastore.ingenta.com/content/aip/journal/jap/117/9/10.1063/1.4913519
Loading
/content/aip/journal/jap/117/9/10.1063/1.4913519
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/117/9/10.1063/1.4913519
2015-03-02
2016-12-10

Abstract

The high open circuit voltage is an attractive feature for the currently popular organic-inorganic hybrid perovskite solar cells. In this paper, by employing the macroscopic device model simulation, we investigate its origin for the planar heterojunction perovskite solar cells. Based on the calculated current density-voltage characteristics, it is revealed that compared to the excitonic solar cells, the fast thermal-activated exciton dissociation in the bulk due to the small exciton binding energy may improve the short circuit current and the fill factor, but its beneficial role on the open circuit voltage is marginal. The most significant contribution for the open circuit voltage comes from the reduced bimolecular recombination. In the perovskites, with the recombination prefactor many orders of magnitude smaller than that based on the Langevin's theory, the internal charge density level is significantly enhanced and the density gradient is removed, leading to the high quasi-Fermi level splitting and thus the small open circuit voltage loss. For the nonradiative recombination pathway due to the deep trap states, it may induce significant loss of open circuit voltage as the trap density is high, while for the moderately low density its effect on the open circuit voltage is small and negligible.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/117/9/1.4913519.html;jsessionid=biitpuE-gW2-GgoamRrf1cvG.x-aip-live-02?itemId=/content/aip/journal/jap/117/9/10.1063/1.4913519&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/117/9/10.1063/1.4913519&pageURL=http://scitation.aip.org/content/aip/journal/jap/117/9/10.1063/1.4913519'
Right1,Right2,Right3,