Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. G. Hodes, Science 342, 317 (2013).
2. H. J. Snaith, J. Phys. Chem. Lett. 4, 3623 (2013).
3. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. H. Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, Sci. Rep. 2, 591 (2012).
4. J. Burschka, N. Pellet, S. J. Moon, R. H. Baker, P. Gao, M. K. Nazeeruddin, and M. Graetzel, Nature 499, 316 (2013).
5. A. S. Subbiah, A. Halder, S. Ghosh, N. Mahuli, G. Hodes, and S. K. Sarkar, J. Phys. Chem. Lett. 5, 1748 (2014).
6. G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, Adv. Funct. Mater. 24, 151 (2014).
7. P. K. Nayak and D. Cahen, Adv. Mater. 26, 1622 (2014).
8. H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Science 345, 542 (2014).
9. W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
10. S. D. Wolf, J. Holovsky, S. J. Moon, P. Loper, B. Niesen, M. Ledinsky, F. J. Haug, J. H. Yum, and C. Ballif, J. Phys. Chem. Lett. 5, 1035 (2014), also see the references therein.
11. A. Marchioro, J. Teuscher, D. Friedrich, M. Kunst, R. V. D. Krol, T. Moehl, M. Graetzel, and J. E. Moser, Nat. Photonics 8, 250 (2014).
12. J. Even, L. Pedesseau, J. M. Jancu, and C. Katan, J. Phys. Chem. Lett. 4, 2999 (2013).
13. F. Brivio, A. B. Walker, and A. Walsh, APL Mater. 1, 042111 (2013).
14. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338, 643 (2012).
15. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science 342, 341 (2013).
16. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, and T. C. Sum, Science 342, 344 (2013).
17. C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, Adv. Mater. 26, 1584 (2014).
18. C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J. P. Wolf, and V. Sundstrom, J. Am. Chem. Soc. 136, 5189 (2014).
19. E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Graetzel, and F. D. Angelis, J. Phys. Chem. C 117, 13902 (2013).
20. E. Edri, S. Kirmayer, D. Cahen, and G. Hodes, J. Phys. Chem. Lett. 4, 897 (2013).
21. T. Minemoto and M. Murata, J. Appl. Phys. 116, 054505 (2014).
22. J. T. W. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. A. Webber, J. Huang, M. Saliba, I. M. Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, Nano Lett. 24, 724 (2014).
23. S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sumbce, and Y. M. Lam, Energy Environ. Sci. 7, 399 (2014).
24. J. Kim, S. H. Lee, J. H. Lee, and K.-H. Hong, J. Phys. Chem. Lett. 5, 1312 (2014).
25. W. J. Yin, T. Shi, and Y. Yan, Appl. Phys. Lett. 104, 063903 (2014).
26. R. Gottesman, E. Haltzi, L. Gouda, S. Tirosh, Y. Bouhadana, and A. Zaban, J. Phys. Chem. Lett. 5, 2662 (2014).
27. Y. Kutes, L. Ye, Y. Zhou, S. Pang, B. D. Huey, and N. P. Padture, J. Phys. Chem. Lett. 5, 3335 (2014).
28. Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. Meredith, Nat. Photonics 9, 106 (2014).
29. T. J. Savenije, C. S. Ponseca, L. Kunneman, M. Abdellah, K. Zheng, Y. Tian, Q. Zhu, S. E. C. I. G. Scheblykin, T. Pullerits, A. Yartsev, and V. Sundstrom, J. Phys. Chem. Lett. 5, 2189 (2014).
30. V. D'Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, Nat. Commun. 5, 3586 (2014).
31. S. D. Stranks, V. M. Burlakov, T. Leijtens, J. M. Ball, A. Goriely, and H. J. Snaith, Phys. Rev. Appl. 2, 034007 (2014).
32. P. S. Davids, I. H. Campbell, and D. L. Smith, J. Appl. Phys. 82, 6319 (1997).
33. L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, Phys. Rev. B 72, 085205 (2005).
34. M. Hirasawa, T. Ishihara, T. Goto, K. Uchida, and N. Miura, Physica B 201, 427 (1994).
35. F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Huttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillips, and R. H. Friend, J. Phys. Chem. Lett. 5, 1421 (2014).
36. G. Lakhwani, A. Rao, and R. H. Friend, Annu. Rev. Phys. Chem. 65, 557 (2014).
37. Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, and Y. Kanemitsu, J. Am. Chem. Soc. 136, 11610 (2014).
38. H. Oga, A. Saeki, Y. Ogomi, S. Hayase, and S. Seki, J. Am. Chem. Soc. 136, 13818 (2014).
39. E. Guillen, F. J. Ramos, J. A. Anta, and S. Ahmad, J. Phys. Chem. C 118, 22913 (2014).
40. J. S. Manser and P. V. Kamat, Nat. Photonics 8, 737 (2014).
41. J. C. Blakesley and D. Neher, Phys. Rev. B 84, 075210 (2011).
42. O. J. Sandberg, M. Nyman, and R. Osterbacka, Phys. Rev. Appl. 1, 024003 (2014).
43. W. J. Yin, T. Shi, and Y. Yan, Adv. Mater. 26, 4653 (2014).
44. M. L. Agiorgousis, Y. Y. Sun, H. Zeng, and S. Zhang, J. Am. Chem. Soc. 136, 14570 (2014).

Data & Media loading...


Article metrics loading...



The high open circuit voltage is an attractive feature for the currently popular organic-inorganic hybrid perovskite solar cells. In this paper, by employing the macroscopic device model simulation, we investigate its origin for the planar heterojunction perovskite solar cells. Based on the calculated current density-voltage characteristics, it is revealed that compared to the excitonic solar cells, the fast thermal-activated exciton dissociation in the bulk due to the small exciton binding energy may improve the short circuit current and the fill factor, but its beneficial role on the open circuit voltage is marginal. The most significant contribution for the open circuit voltage comes from the reduced bimolecular recombination. In the perovskites, with the recombination prefactor many orders of magnitude smaller than that based on the Langevin's theory, the internal charge density level is significantly enhanced and the density gradient is removed, leading to the high quasi-Fermi level splitting and thus the small open circuit voltage loss. For the nonradiative recombination pathway due to the deep trap states, it may induce significant loss of open circuit voltage as the trap density is high, while for the moderately low density its effect on the open circuit voltage is small and negligible.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd