Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/118/11/10.1063/1.4931145
1.
1. A. Momose, “ Recent advances in x-ray phase imaging,” Jpn. J. Appl. Phys. Part 1 44, 63556367 (2005).
http://dx.doi.org/10.1143/JJAP.44.6355
2.
2. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “ Hard-X-ray dark-field imaging using a grating interferometer,” Nature Mater. 7, 134137 (2008).
http://dx.doi.org/10.1038/nmat2096
3.
3. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “ On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 54865492 (1995).
http://dx.doi.org/10.1063/1.1146073
4.
4. P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “ Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D: Appl. Phys. 29, 133146 (1996).
http://dx.doi.org/10.1088/0022-3727/29/1/023
5.
5. T. Weitkamp, D. Haas, D. Wegrzynek, and A. Rack, “ ANKAphase: Software for single-distance phase retrieval from inline x-ray phase-contrast radiographs,” J. Synchrotron Radiat. 18, 617629 (2011).
http://dx.doi.org/10.1107/S0909049511002895
6.
6. P. C. Diemoz, P. Coan, C. Glaser, and A. Bravin, “ Absorption, refraction and scattering in analyzer-based imaging: Comparison of different algorithms,” Opt. Express 18, 34943509 (2010).
http://dx.doi.org/10.1364/OE.18.003494
7.
7. E. Pagot, P. Cloetens, S. Fiedler, A. Bravin, P. Coan, J. Baruchel, J. Härtwig, and W. Thomlinson, “ A method to extract quantitative information in analyzer-based x-ray phase contrast imaging,” Appl. Phys. Lett. 82, 34213423 (2003).
http://dx.doi.org/10.1063/1.1575508
8.
8. C. David, B. Nöhammer, H. H. Solak, and E. Ziegler, “ Differential x-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81, 32873289 (2002).
http://dx.doi.org/10.1063/1.1516611
9.
9. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “ Demonstration of X-ray Talbot Interferometry,” Jpn. J. Appl. Phys. Part 2 42, L866L868 (2003).
http://dx.doi.org/10.1143/JJAP.42.L866
10.
10. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “ X-ray phase imaging with a grating interferometer,” Opt. Express 13, 62966304 (2005).
http://dx.doi.org/10.1364/OPEX.13.006296
11.
11. A. Olivo and R. Speller, “ A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91, 074106 (2007).
http://dx.doi.org/10.1063/1.2772193
12.
12. M. Ando, E. Hashimoto, H. Hashizume, K. Hyodo, H. Inoue, T. Kunisada, A. Maksimenko, K. Mori, E. Rubenstein, J. Roberson, D. Shimao, H. Sugiyama, K. Takeda, F. Toyofuku, E. Ueno, K. Umetani, H. Wada, and W. Pattanasiriwisawa, “ Clinical step onward with X-ray dark-field imaging and perspective view of medical applications of synchrotron radiation in Japan,” Nucl. Instrum. Methods Phys. Res., Sect. A 548, 116 (2005).
http://dx.doi.org/10.1016/j.nima.2005.03.059
13.
13. F. Pfeiffer, M. Bech, O. Bunk, T. Donath, B. Henrich, P. Kraft, and C. David, “ X-ray dark-field and phase-contrast imaging using a grating interferometer,” J. Appl. Phys. 105, 102006 (2009).
http://dx.doi.org/10.1063/1.3115639
14.
14. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “ Phase-contrast imaging using polychromatic hard x-rays,” Nature 384, 335337 (1996).
http://dx.doi.org/10.1038/384335a0
15.
15. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “ Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2, 258261 (2006).
http://dx.doi.org/10.1038/nphys265
16.
16. K. S. Morgan, D. M. Paganin, and K. K. W. Siu, “ X-ray phase imaging with a paper analyzer,” Appl. Phys. Lett. 100, 124102 (2012).
http://dx.doi.org/10.1063/1.3694918
17.
17. S. Berujon, H. Wang, and K. Sawhney, “ X-ray multimodal imaging using a random-phase object,” Phys. Rev. A 86, 063813 (2012).
http://dx.doi.org/10.1103/PhysRevA.86.063813
18.
18. R. Cerbino, L. Peverini, M. Potenza, A. Robert, P. Bosecke, and M. Giglio, “ X-ray-scattering information obtained from near-field speckle,” Nat. Phys. 4, 238243 (2008).
http://dx.doi.org/10.1038/nphys837
19.
19. T. Zhou, I. Zanette, M.-C. Zdora, U. Lundström, D. H. Larsson, H. M. Hertz, F. Pfeiffer, and A. Burvall, “ Speckle-based x-ray phase-contrast imaging with a laboratory source and the scanning technique,” Opt. Lett. 40, 28222825 (2015).
http://dx.doi.org/10.1364/OL.40.002822
20.
20. S. Bérujon, E. Ziegler, R. Cerbino, and L. Peverini, “ Two-dimensional x-ray beam phase sensing,” Phys. Rev. Lett. 108, 158102 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.158102
21.
21. I. Zanette, T. Zhou, A. Burvall, U. Lundström, D. H. Larsson, M. Zdora, P. Thibault, F. Pfeiffer, and H. M. Hertz, “ Speckle-based X-ray phase-contrast and dark-field imaging with a laboratory source,” Phys. Rev. Lett. 112, 253903 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.253903
22.
22. O. Hemberg, M. Otendal, and H. M. Hertz, “ Liquid-metal-jet anode electron-impact x-ray source,” Appl. Phys. Lett. 83, 14831485 (2003).
http://dx.doi.org/10.1063/1.1602157
23.
23. M. Chabior, T. Donath, C. David, O. Bunk, M. Schuster, C. Schroer, and F. Pfeiffer, “ Beam hardening effects in grating-based x-ray phase-contrast imaging,” Med. Phys. 38, 11891195 (2011).
http://dx.doi.org/10.1118/1.3553408
24.
24. P. R. T. Munro and A. Olivo, “ X-ray phase-contrast imaging with polychromatic sources and the concept of effective energy,” Phys. Rev. A 87, 053838 (2013).
http://dx.doi.org/10.1103/PhysRevA.87.053838
25.
25. N. Bevins, J. Zambelli, K. Li, Z. Qi, and G.-H. Chen, “ Beam hardening in x-ray differential phase contrast computed tomography,” Proc. SPIE 7961, 79611H (2011).
http://dx.doi.org/10.1117/12.878483
26.
26. N. Bevins, K. Li, J. Zambelli, and G.-H. Chen, “ Type II beam hardening artifacts in phase contrast imaging,” Proc. SPIE 8668, 866816 (2013).
http://dx.doi.org/10.1117/12.2007035
27.
27. A. Malecki, Ph.D. thesis, Technische Universität München, München, 2013.
28.
28. A. Malecki, G. Potdevin, and F. Pfeiffer, “ Quantitative wave-optical numerical analysis of the dark-field signal in grating-based x-ray interferometry,” Europhys. Lett. 99, 48001 (2012).
http://dx.doi.org/10.1209/0295-5075/99/48001
29.
29. J. Wolf, A. Malecki, J. Sperl, M. Chabior, M. Schüttler, D. Bequé, C. Cozzini, and F. Pfeiffer, “ Fast one-dimensional wave-front propagation for x-ray differential phase-contrast imaging,” Biomed. Opt. Express 5, 37393747 (2014).
http://dx.doi.org/10.1364/BOE.5.003739
30.
30. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. ( Roberts & Company Publishers, Englewood, CO, 2004).
31.
31. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light ( Cambridge University Press, 1998).
32.
32.The chemical formula used for modeling the cellulose backing of the diffuser is (C6H10O5)n with a density of 1.5 g/cm3.
33.
33. A. Burvall, U. Lundström, P. A. C. Takman, D. H. Larsson, and H. M. Hertz, “ Phase retrieval in x-ray phase-contrast imaging suitable for tomography,” Opt. Express 19, 1035910376 (2011).
http://dx.doi.org/10.1364/OE.19.010359
34.
34. J. W. Goodman, “ Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, Topics in Applied Physics Vol. 9, edited by J. Dainty ( Springer-Verlag, 1984).
35.
35. T. L. Alexander, J. E. Harvey, and A. R. Weeks, “ Average speckle size as a function of intensity threshold level: Comparison of experimental measurements with theory,” Appl. Opt. 33, 82408250 (1994).
http://dx.doi.org/10.1364/AO.33.008240
36.
36. A. Hamed, “ Recognition of direction of new apertures from the elongated speckle images: Simulation,” Opt. Photonics J. 3, 250258 (2013).
http://dx.doi.org/10.4236/opj.2013.33040
37.
37.The median absolute deviation of the visibility values for the ROIs ranges between 3.2% and 3.8% of the median and is neglected here.
38.
38. V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “ Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum. 81, 073709 (2010).
http://dx.doi.org/10.1063/1.3465334
39.
39. T. Thuering and M. Stampanoni, “ Performance and optimization of x-ray grating interferometry,” Philos. Trans. R. Soc. London, Sect. A 372, 20130027 (2014).
http://dx.doi.org/10.1098/rsta.2013.0027
40.
40.See supplementary material at http://dx.doi.org/10.1063/1.4931145 for the influence of the diffuser on the x-ray spectrum.[Supplementary Material]
41.
41. A. Sarapata, M. Chabior, C. Cozzini, J. I. Sperl, D. Bequ, O. Langner, J. Coman, I. Zanette, M. Ruiz-Yaniz, and F. Pfeiffer, “ Quantitative electron density characterization of soft tissue substitute plastic materials using grating-based x-ray phase-contrast imaging,” Rev. Sci. Instrum. 85, 103708 (2014).
http://dx.doi.org/10.1063/1.4898052
42.
42. B. Henke, E. Gullikson, and J. Davis, “ X-ray Interactions: Photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54, 181342 (1993).
http://dx.doi.org/10.1006/adnd.1993.1013
43.
43. The contrast-transfer function is a result of free-space propagation. The intensity in the detector plane can be determined in Fourier space as the product of the free-space propagator and the complex object transmission function of the sample [44–46]. The part related to the phase of the wavefront is called phase contrast-transfer function and is given by , where λ is the wavelength of the x-rays, z the propagation distance, and q denotes the spatial frequency. The first maximum appears for and hence at the spatial frequency for a given energy. In Fig. 7, we observe maximum visibility at an energy of approximately corresponding to a wavelength of . With a propagation distance of , we obtain a spatial frequency of . The period is consistent with the dimensions of the scattering features of the diffuser, which contains grains of 14.4–28.8 μm diameter.
44.
44. T. Salditt, K. Giewekemeyer, C. Fuhse, S. P. Krüger, R. Tucoulou, and P. Cloetens, “ Projection phase contrast microscopy with a hard x-ray nanofocused beam: Defocus and contrast transfer,” Phys. Rev. B 79, 184112 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.184112
45.
45. S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “ Optimization of phase contrast imaging using hard x rays,” Rev. Sci. Instrum. 76, 073705 (2005).
http://dx.doi.org/10.1063/1.1960797
46.
46. M. Engelhardt, C. Kottler, O. Bunk, C. David, C. Schroer, J. Baumann, M. Schuster, and F. Pfeiffer, “ The fractional Talbot effect in differential x-ray phase-contrast imaging for extended and polychromatic x-ray sources,” J. Microsc. 232, 145157 (2008).
http://dx.doi.org/10.1111/j.1365-2818.2008.02072.x
http://aip.metastore.ingenta.com/content/aip/journal/jap/118/11/10.1063/1.4931145
Loading
/content/aip/journal/jap/118/11/10.1063/1.4931145
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/118/11/10.1063/1.4931145
2015-09-17
2016-12-10

Abstract

Following the first experimental demonstration of x-ray speckle-based multimodal imaging using a polychromatic beam [I. Zanette ., Phys. Rev. Lett. (25), 253903 (2014)], we present a simulation study on the effects of a polychromatic x-ray spectrum on the performance of this technique. We observe that the contrast of the near-field speckles is only mildly influenced by the bandwidth of the energy spectrum. Moreover, using a homogeneous object with simple geometry, we characterize the beam hardening artifacts in the reconstructed transmission and refraction angle images, and we describe how the beam hardening also affects the dark-field signal provided by speckle tracking. This study is particularly important for further implementations and developments of coherent speckle-based techniques at laboratory x-ray sources.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/118/11/1.4931145.html;jsessionid=ZvLrdSZyDU9X78Uv1RHVIYQN.x-aip-live-02?itemId=/content/aip/journal/jap/118/11/10.1063/1.4931145&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/118/11/10.1063/1.4931145&pageURL=http://scitation.aip.org/content/aip/journal/jap/118/11/10.1063/1.4931145'
Right1,Right2,Right3,