Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Momose, “ Recent advances in x-ray phase imaging,” Jpn. J. Appl. Phys. Part 1 44, 63556367 (2005).
2. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “ Hard-X-ray dark-field imaging using a grating interferometer,” Nature Mater. 7, 134137 (2008).
3. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “ On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 54865492 (1995).
4. P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “ Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D: Appl. Phys. 29, 133146 (1996).
5. T. Weitkamp, D. Haas, D. Wegrzynek, and A. Rack, “ ANKAphase: Software for single-distance phase retrieval from inline x-ray phase-contrast radiographs,” J. Synchrotron Radiat. 18, 617629 (2011).
6. P. C. Diemoz, P. Coan, C. Glaser, and A. Bravin, “ Absorption, refraction and scattering in analyzer-based imaging: Comparison of different algorithms,” Opt. Express 18, 34943509 (2010).
7. E. Pagot, P. Cloetens, S. Fiedler, A. Bravin, P. Coan, J. Baruchel, J. Härtwig, and W. Thomlinson, “ A method to extract quantitative information in analyzer-based x-ray phase contrast imaging,” Appl. Phys. Lett. 82, 34213423 (2003).
8. C. David, B. Nöhammer, H. H. Solak, and E. Ziegler, “ Differential x-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81, 32873289 (2002).
9. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “ Demonstration of X-ray Talbot Interferometry,” Jpn. J. Appl. Phys. Part 2 42, L866L868 (2003).
10. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “ X-ray phase imaging with a grating interferometer,” Opt. Express 13, 62966304 (2005).
11. A. Olivo and R. Speller, “ A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91, 074106 (2007).
12. M. Ando, E. Hashimoto, H. Hashizume, K. Hyodo, H. Inoue, T. Kunisada, A. Maksimenko, K. Mori, E. Rubenstein, J. Roberson, D. Shimao, H. Sugiyama, K. Takeda, F. Toyofuku, E. Ueno, K. Umetani, H. Wada, and W. Pattanasiriwisawa, “ Clinical step onward with X-ray dark-field imaging and perspective view of medical applications of synchrotron radiation in Japan,” Nucl. Instrum. Methods Phys. Res., Sect. A 548, 116 (2005).
13. F. Pfeiffer, M. Bech, O. Bunk, T. Donath, B. Henrich, P. Kraft, and C. David, “ X-ray dark-field and phase-contrast imaging using a grating interferometer,” J. Appl. Phys. 105, 102006 (2009).
14. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “ Phase-contrast imaging using polychromatic hard x-rays,” Nature 384, 335337 (1996).
15. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “ Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2, 258261 (2006).
16. K. S. Morgan, D. M. Paganin, and K. K. W. Siu, “ X-ray phase imaging with a paper analyzer,” Appl. Phys. Lett. 100, 124102 (2012).
17. S. Berujon, H. Wang, and K. Sawhney, “ X-ray multimodal imaging using a random-phase object,” Phys. Rev. A 86, 063813 (2012).
18. R. Cerbino, L. Peverini, M. Potenza, A. Robert, P. Bosecke, and M. Giglio, “ X-ray-scattering information obtained from near-field speckle,” Nat. Phys. 4, 238243 (2008).
19. T. Zhou, I. Zanette, M.-C. Zdora, U. Lundström, D. H. Larsson, H. M. Hertz, F. Pfeiffer, and A. Burvall, “ Speckle-based x-ray phase-contrast imaging with a laboratory source and the scanning technique,” Opt. Lett. 40, 28222825 (2015).
20. S. Bérujon, E. Ziegler, R. Cerbino, and L. Peverini, “ Two-dimensional x-ray beam phase sensing,” Phys. Rev. Lett. 108, 158102 (2012).
21. I. Zanette, T. Zhou, A. Burvall, U. Lundström, D. H. Larsson, M. Zdora, P. Thibault, F. Pfeiffer, and H. M. Hertz, “ Speckle-based X-ray phase-contrast and dark-field imaging with a laboratory source,” Phys. Rev. Lett. 112, 253903 (2014).
22. O. Hemberg, M. Otendal, and H. M. Hertz, “ Liquid-metal-jet anode electron-impact x-ray source,” Appl. Phys. Lett. 83, 14831485 (2003).
23. M. Chabior, T. Donath, C. David, O. Bunk, M. Schuster, C. Schroer, and F. Pfeiffer, “ Beam hardening effects in grating-based x-ray phase-contrast imaging,” Med. Phys. 38, 11891195 (2011).
24. P. R. T. Munro and A. Olivo, “ X-ray phase-contrast imaging with polychromatic sources and the concept of effective energy,” Phys. Rev. A 87, 053838 (2013).
25. N. Bevins, J. Zambelli, K. Li, Z. Qi, and G.-H. Chen, “ Beam hardening in x-ray differential phase contrast computed tomography,” Proc. SPIE 7961, 79611H (2011).
26. N. Bevins, K. Li, J. Zambelli, and G.-H. Chen, “ Type II beam hardening artifacts in phase contrast imaging,” Proc. SPIE 8668, 866816 (2013).
27. A. Malecki, Ph.D. thesis, Technische Universität München, München, 2013.
28. A. Malecki, G. Potdevin, and F. Pfeiffer, “ Quantitative wave-optical numerical analysis of the dark-field signal in grating-based x-ray interferometry,” Europhys. Lett. 99, 48001 (2012).
29. J. Wolf, A. Malecki, J. Sperl, M. Chabior, M. Schüttler, D. Bequé, C. Cozzini, and F. Pfeiffer, “ Fast one-dimensional wave-front propagation for x-ray differential phase-contrast imaging,” Biomed. Opt. Express 5, 37393747 (2014).
30. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. ( Roberts & Company Publishers, Englewood, CO, 2004).
31. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light ( Cambridge University Press, 1998).
32.The chemical formula used for modeling the cellulose backing of the diffuser is (C6H10O5)n with a density of 1.5 g/cm3.
33. A. Burvall, U. Lundström, P. A. C. Takman, D. H. Larsson, and H. M. Hertz, “ Phase retrieval in x-ray phase-contrast imaging suitable for tomography,” Opt. Express 19, 1035910376 (2011).
34. J. W. Goodman, “ Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, Topics in Applied Physics Vol. 9, edited by J. Dainty ( Springer-Verlag, 1984).
35. T. L. Alexander, J. E. Harvey, and A. R. Weeks, “ Average speckle size as a function of intensity threshold level: Comparison of experimental measurements with theory,” Appl. Opt. 33, 82408250 (1994).
36. A. Hamed, “ Recognition of direction of new apertures from the elongated speckle images: Simulation,” Opt. Photonics J. 3, 250258 (2013).
37.The median absolute deviation of the visibility values for the ROIs ranges between 3.2% and 3.8% of the median and is neglected here.
38. V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “ Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum. 81, 073709 (2010).
39. T. Thuering and M. Stampanoni, “ Performance and optimization of x-ray grating interferometry,” Philos. Trans. R. Soc. London, Sect. A 372, 20130027 (2014).
40.See supplementary material at for the influence of the diffuser on the x-ray spectrum.[Supplementary Material]
41. A. Sarapata, M. Chabior, C. Cozzini, J. I. Sperl, D. Bequ, O. Langner, J. Coman, I. Zanette, M. Ruiz-Yaniz, and F. Pfeiffer, “ Quantitative electron density characterization of soft tissue substitute plastic materials using grating-based x-ray phase-contrast imaging,” Rev. Sci. Instrum. 85, 103708 (2014).
42. B. Henke, E. Gullikson, and J. Davis, “ X-ray Interactions: Photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54, 181342 (1993).
43. The contrast-transfer function is a result of free-space propagation. The intensity in the detector plane can be determined in Fourier space as the product of the free-space propagator and the complex object transmission function of the sample [44–46]. The part related to the phase of the wavefront is called phase contrast-transfer function and is given by , where λ is the wavelength of the x-rays, z the propagation distance, and q denotes the spatial frequency. The first maximum appears for and hence at the spatial frequency for a given energy. In Fig. 7, we observe maximum visibility at an energy of approximately corresponding to a wavelength of . With a propagation distance of , we obtain a spatial frequency of . The period is consistent with the dimensions of the scattering features of the diffuser, which contains grains of 14.4–28.8 μm diameter.
44. T. Salditt, K. Giewekemeyer, C. Fuhse, S. P. Krüger, R. Tucoulou, and P. Cloetens, “ Projection phase contrast microscopy with a hard x-ray nanofocused beam: Defocus and contrast transfer,” Phys. Rev. B 79, 184112 (2009).
45. S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “ Optimization of phase contrast imaging using hard x rays,” Rev. Sci. Instrum. 76, 073705 (2005).
46. M. Engelhardt, C. Kottler, O. Bunk, C. David, C. Schroer, J. Baumann, M. Schuster, and F. Pfeiffer, “ The fractional Talbot effect in differential x-ray phase-contrast imaging for extended and polychromatic x-ray sources,” J. Microsc. 232, 145157 (2008).

Data & Media loading...


Article metrics loading...



Following the first experimental demonstration of x-ray speckle-based multimodal imaging using a polychromatic beam [I. Zanette ., Phys. Rev. Lett. (25), 253903 (2014)], we present a simulation study on the effects of a polychromatic x-ray spectrum on the performance of this technique. We observe that the contrast of the near-field speckles is only mildly influenced by the bandwidth of the energy spectrum. Moreover, using a homogeneous object with simple geometry, we characterize the beam hardening artifacts in the reconstructed transmission and refraction angle images, and we describe how the beam hardening also affects the dark-field signal provided by speckle tracking. This study is particularly important for further implementations and developments of coherent speckle-based techniques at laboratory x-ray sources.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd