Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. K. Likharev, Proc. IEEE 87, 606 (1999).
2. W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha, and L. P. Kouwenhoven, Rev. Mod. Phys. 75, 1 (2003).
3. R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007).
4. Y. A. Pasukin, Y. Nakamura, and J. S. Tsai, Appl. Phys. Lett. 76, 2256 (2000).
5. M. Saitoh, T. Saito, T. Inukai, and T. Hiramoto, Appl. Phys. Lett. 79, 2025 (2001).
6. K. I. Bolotin, F. Kuemmeth, A. N. Pasupathy, and D. C. Ralph, Appl. Phys. Lett. 84, 3154 (2004).
7. V. Ray, R. Subramanian, P. Bhadrachalam, L.-C. Ma, C.-U. Kim, and S. J. Koh, Nat. Nanotechnol. 3, 603 (2008).
8. F. Kuemmeth, K. I. Bolotin, S.-F. Shi, and D. C. Ralph, Nano Lett. 8, 4506 (2008).
9. C. R. Wolf, K. Thonke, and R. Sauer, Appl. Phys. Lett. 96, 142108 (2010).
10. S. I. Khondaker and Z. Yao, Appl. Phys. Lett. 81, 4613 (2002).
11. S. I. Khondaker, K. Luo, and Z. Yao, Nanotechnology 21, 095204 (2010).
12. Y. Azuma, S. Suzuki, K. Maeda, N. Okabayashi, D. Tanaka, M. Sakamoto, T. Teranishi, M. R. Buitelaar, C. G. Smith, and Y. Majima, Appl. Phys. Lett. 99, 073109 (2011).
13. N. Okabayashi, K. Maeda, T. Muraki, D. Tanaka, M. Sakamoto, T. Teranishi, and Y. Majima, Appl. Phys. Lett. 100, 033101 (2012).
14. K. Maeda, N. Okabayashi, S. Kano, S. Takeshita, D. Tanaka, M. Sakamoto, T. Teranishi, and Y. Majima, ACS Nano 6, 2798 (2012).
15. G. Hackenberger, S. Kano, Y. Azuma, S. Takeshita, D. Tanaka, M. Sakamoto, T. Teranishi, Y. Ohno, K. Maehashi, K. Matsumoto, and Y. Majima, Jpn. J. Appl. Phys., Part 1 52, 110101 (2013).
16. S. Kano, Y. Azuma, D. Tanaka, M. Sakamoto, T. Teranishi, L. W. Smith, C. G. Smith, and Y. Majima, J. Appl. Phys. 114, 223717 (2013).
17. S. Kano, D. Tanaka, M. Sakamoto, T. Teranishi, and Y. Majima, Nanotechnology 26, 045702 (2015).
18. K. Ono, D. G. Austing, Y. Tokura, and S. Tarucha, Science 297, 1313 (2002).
19. V. N. Golovach and D. Loss, Phys. Rev. B 69, 245327 (2004).
20. J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Science 309, 2180 (2005).
21. A. Fujiwara, H. Inokawa, K. Yamazaki, H. Namatsu, Y. Takahashi, N. M. Zimmerman, and S. B. Martin, Appl. Phys. Lett. 88, 053121 (2006).
22. G. Yamahata, Y. Tsuchiya, S. Oda, Z. A. K. Durrani, and H. Mizuta, Jpn. J. Appl. Phys., Part 1 47, 4820 (2008).
23. G. Yamahata, T. Kodera, H. O. H. Churchill, K. Uchida, C. M. Marcus, and S. Oda, Phys. Rev. B 86, 115322 (2012).
24. M. R. Connolly, K. L. Chiu, S. P. Giblin, M. Kataoka, J. D. Fletcher, C. Chua, J. P. Griffiths, G. A. C. Jones, V. I. Fal'ko, C. G. Smith, and T. J. B. M. Janssen, Nat. Nanotechnol. 8, 417 (2013).
25. F. R. Waugh, M. J. Berry, C. H. Crough, C. Livermore, D. J. Mar, R. M. Westervelt, K. L. Campman, and A. C. Gossard, Phys. Rev. B 53, 1413 (1996).
26. T. Junno, S.-B. Carlsson, H. Q. Xu, L. Samuelson, A. O. Orlov, and G. L. Snider, Appl. Phys. Lett. 80, 667 (2002).
27. A. V. Danilov, D. S. Golubev, and S. E. Kubatkin, Phys. Rev. B 65, 125312 (2002).
28. V. H. Nguyen, V. L. Nguyen, and H. N. Nguyen, J. Appl. Phys. 96, 3302 (2004).
29. D. N. Weiss, X. Brokmann, L. E. Calvet, M. A. Kastner, and M. G. Bawendi, Appl. Phys. Lett. 88, 143507 (2006).
30. T. Kodera, T. Ferrus, T. Nakaoka, G. Podd, M. Tanner, D. Williams, and Y. Arakawa, Jpn. J. Appl. Phys., Part 1 48, 06FF15 (2009).
31. Y. Noguchi, T. Terui, T. Katayama, M. M. Matsushita, and T. Sugawara, J. Appl. Phys. 108, 094313 (2010).
32. A. Guttman, D. Mahalu, J. Sperling, E. Cohen-Hoshen, and I. Bar-Joseph, Appl. Phys. Lett. 99, 063113 (2011).
33. Y. Vardi, A. Guttman, and I. Bar-Joseph, Nano Lett. 14, 2794 (2014).
34. S. Imai, H. Kato, and Y. Hiraoka, Jpn. J. Appl. Phys., Part 1 51, 124301 (2012).
35. S. Kano, Y. Azuma, K. Maeda, D. Tanaka, M. Sakamoto, T. Teranishi, L. W. Smith, C. G. Smith, and Y. Majima, ACS Nano 6, 9972 (2012).
36. Y. Yasutake, K. Kono, M. Kanehara, T. Teranishi, M. R. Buitelaar, C. G. Smith, and Y. Majima, Appl. Phys. Lett. 91, 203107 (2007).
37. V. M. Serdio, Y. Azuma, S. Takeshita, T. Muraki, T. Teranishi, and Y. Majima, Nanoscale 4, 7161 (2012).
38. M. Giersig and P. Mulvaney, Langmuir 9, 3408 (1993).
39.See supplementary material at for the additional information of the analysis in the main text.[Supplementary Material]
40. D. V. Averin, A. N. Korotkov, and K. K. Likharev, Phys. Rev. B 44, 6199 (1991).
41. S. Hershfield, J. H. Davies, P. Hyldgaard, C. J. Stanton, and J. W. Wilkins, Phys. Rev. B 47, 1967 (1993).
42. H. Zhang, Y. Yasutake, Y. Shichibu, T. Teranishi, and Y. Majima, Phys. Rev. B 72, 205441 (2005).
43. S. Kano, T. Tada, and Y. Majima, Chem. Soc. Rev. 44, 970987 (2015).
44. K.-H. Jung, E. Hase, Y. Yasutake, H.-K. Shin, Y.-S. Kwon, and Y. Majima, Jpn. J. Appl. Phys., Part 2 45, L840 (2006).
45. X. Li, Y. Yasutake, K. Kono, M. Kanehara, T. Teranishi, and Y. Majima, Jpn. J. Appl. Phys., Part 1 48, 04C180 (2009).
46. Y. Yasutake, Z. Shi, T. Okazaki, H. Shinohara, and Y. Majima, Nano Lett. 5, 1057 (2005).
47. V. M. Serdio, T. Muraki, S. Takeshita, D. E. Hurtado, S. Kano, T. Teranishi, and Y. Majima, RSC Adv. 5, 22160 (2015).
48. W. R. Smythe, Static and Dynamic Electricity, 2nd ed. ( McGraw-Hill Book Company, Inc., 1950), pp. 118122.
49. M. D. Porter, T. B. Bright, D. L. Allala, and C. E. D. Chidsey, J. Am. Chem. Soc. 109, 3559 (1987).

Data & Media loading...


Article metrics loading...



We present the analysis of chemically assembled double-dot single-electron transistors using orthodox model considering offset charges. First, we fabricate chemically assembled single-electron transistors (SETs) consisting of two Au nanoparticles between electroless Au-plated nanogap electrodes. Then, extraordinary stable Coulomb diamonds in the double-dot SETs are analyzed using the orthodox model, by considering offset charges on the respective quantum dots. We determine the equivalent circuit parameters from Coulomb diamonds and drain current vs. drain voltage curves of the SETs. The accuracies of the capacitances and offset charges on the quantum dots are within ±10%, and ±0.04 (where is the elementary charge), respectively. The parameters can be explained by the geometrical structures of the SETs observed using scanning electron microscopy images. Using this approach, we are able to understand the spatial characteristics of the double quantum dots, such as the relative distance from the gate electrode and the conditions for adsorption between the nanogap electrodes.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd