Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/118/13/10.1063/1.4931611
1.
1. K. K. Likharev, Proc. IEEE 87, 606 (1999).
http://dx.doi.org/10.1109/5.752518
2.
2. W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha, and L. P. Kouwenhoven, Rev. Mod. Phys. 75, 1 (2003).
http://dx.doi.org/10.1103/RevModPhys.75.1
3.
3. R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007).
http://dx.doi.org/10.1103/RevModPhys.79.1217
4.
4. Y. A. Pasukin, Y. Nakamura, and J. S. Tsai, Appl. Phys. Lett. 76, 2256 (2000).
http://dx.doi.org/10.1063/1.126313
5.
5. M. Saitoh, T. Saito, T. Inukai, and T. Hiramoto, Appl. Phys. Lett. 79, 2025 (2001).
http://dx.doi.org/10.1063/1.1405805
6.
6. K. I. Bolotin, F. Kuemmeth, A. N. Pasupathy, and D. C. Ralph, Appl. Phys. Lett. 84, 3154 (2004).
http://dx.doi.org/10.1063/1.1695203
7.
7. V. Ray, R. Subramanian, P. Bhadrachalam, L.-C. Ma, C.-U. Kim, and S. J. Koh, Nat. Nanotechnol. 3, 603 (2008).
http://dx.doi.org/10.1038/nnano.2008.267
8.
8. F. Kuemmeth, K. I. Bolotin, S.-F. Shi, and D. C. Ralph, Nano Lett. 8, 4506 (2008).
http://dx.doi.org/10.1021/nl802473n
9.
9. C. R. Wolf, K. Thonke, and R. Sauer, Appl. Phys. Lett. 96, 142108 (2010).
http://dx.doi.org/10.1063/1.3383235
10.
10. S. I. Khondaker and Z. Yao, Appl. Phys. Lett. 81, 4613 (2002).
http://dx.doi.org/10.1063/1.1528285
11.
11. S. I. Khondaker, K. Luo, and Z. Yao, Nanotechnology 21, 095204 (2010).
http://dx.doi.org/10.1088/0957-4484/21/9/095204
12.
12. Y. Azuma, S. Suzuki, K. Maeda, N. Okabayashi, D. Tanaka, M. Sakamoto, T. Teranishi, M. R. Buitelaar, C. G. Smith, and Y. Majima, Appl. Phys. Lett. 99, 073109 (2011).
http://dx.doi.org/10.1063/1.3626036
13.
13. N. Okabayashi, K. Maeda, T. Muraki, D. Tanaka, M. Sakamoto, T. Teranishi, and Y. Majima, Appl. Phys. Lett. 100, 033101 (2012).
http://dx.doi.org/10.1063/1.3676191
14.
14. K. Maeda, N. Okabayashi, S. Kano, S. Takeshita, D. Tanaka, M. Sakamoto, T. Teranishi, and Y. Majima, ACS Nano 6, 2798 (2012).
http://dx.doi.org/10.1021/nn3003086
15.
15. G. Hackenberger, S. Kano, Y. Azuma, S. Takeshita, D. Tanaka, M. Sakamoto, T. Teranishi, Y. Ohno, K. Maehashi, K. Matsumoto, and Y. Majima, Jpn. J. Appl. Phys., Part 1 52, 110101 (2013).
http://dx.doi.org/10.7567/JJAP.52.110101
16.
16. S. Kano, Y. Azuma, D. Tanaka, M. Sakamoto, T. Teranishi, L. W. Smith, C. G. Smith, and Y. Majima, J. Appl. Phys. 114, 223717 (2013).
http://dx.doi.org/10.1063/1.4847955
17.
17. S. Kano, D. Tanaka, M. Sakamoto, T. Teranishi, and Y. Majima, Nanotechnology 26, 045702 (2015).
http://dx.doi.org/10.1088/0957-4484/26/4/045702
18.
18. K. Ono, D. G. Austing, Y. Tokura, and S. Tarucha, Science 297, 1313 (2002).
http://dx.doi.org/10.1126/science.1070958
19.
19. V. N. Golovach and D. Loss, Phys. Rev. B 69, 245327 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.245327
20.
20. J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Science 309, 2180 (2005).
http://dx.doi.org/10.1126/science.1116955
21.
21. A. Fujiwara, H. Inokawa, K. Yamazaki, H. Namatsu, Y. Takahashi, N. M. Zimmerman, and S. B. Martin, Appl. Phys. Lett. 88, 053121 (2006).
http://dx.doi.org/10.1063/1.2168496
22.
22. G. Yamahata, Y. Tsuchiya, S. Oda, Z. A. K. Durrani, and H. Mizuta, Jpn. J. Appl. Phys., Part 1 47, 4820 (2008).
http://dx.doi.org/10.1143/JJAP.47.4820
23.
23. G. Yamahata, T. Kodera, H. O. H. Churchill, K. Uchida, C. M. Marcus, and S. Oda, Phys. Rev. B 86, 115322 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.115322
24.
24. M. R. Connolly, K. L. Chiu, S. P. Giblin, M. Kataoka, J. D. Fletcher, C. Chua, J. P. Griffiths, G. A. C. Jones, V. I. Fal'ko, C. G. Smith, and T. J. B. M. Janssen, Nat. Nanotechnol. 8, 417 (2013).
http://dx.doi.org/10.1038/nnano.2013.73
25.
25. F. R. Waugh, M. J. Berry, C. H. Crough, C. Livermore, D. J. Mar, R. M. Westervelt, K. L. Campman, and A. C. Gossard, Phys. Rev. B 53, 1413 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.1413
26.
26. T. Junno, S.-B. Carlsson, H. Q. Xu, L. Samuelson, A. O. Orlov, and G. L. Snider, Appl. Phys. Lett. 80, 667 (2002).
http://dx.doi.org/10.1063/1.1436532
27.
27. A. V. Danilov, D. S. Golubev, and S. E. Kubatkin, Phys. Rev. B 65, 125312 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.125312
28.
28. V. H. Nguyen, V. L. Nguyen, and H. N. Nguyen, J. Appl. Phys. 96, 3302 (2004).
http://dx.doi.org/10.1063/1.1782954
29.
29. D. N. Weiss, X. Brokmann, L. E. Calvet, M. A. Kastner, and M. G. Bawendi, Appl. Phys. Lett. 88, 143507 (2006).
http://dx.doi.org/10.1063/1.2189012
30.
30. T. Kodera, T. Ferrus, T. Nakaoka, G. Podd, M. Tanner, D. Williams, and Y. Arakawa, Jpn. J. Appl. Phys., Part 1 48, 06FF15 (2009).
http://dx.doi.org/10.1143/JJAP.48.06FF15
31.
31. Y. Noguchi, T. Terui, T. Katayama, M. M. Matsushita, and T. Sugawara, J. Appl. Phys. 108, 094313 (2010).
http://dx.doi.org/10.1063/1.3494110
32.
32. A. Guttman, D. Mahalu, J. Sperling, E. Cohen-Hoshen, and I. Bar-Joseph, Appl. Phys. Lett. 99, 063113 (2011).
http://dx.doi.org/10.1063/1.3624899
33.
33. Y. Vardi, A. Guttman, and I. Bar-Joseph, Nano Lett. 14, 2794 (2014).
http://dx.doi.org/10.1021/nl500803p
34.
34. S. Imai, H. Kato, and Y. Hiraoka, Jpn. J. Appl. Phys., Part 1 51, 124301 (2012).
http://dx.doi.org/10.7567/JJAP.51.124301
35.
35. S. Kano, Y. Azuma, K. Maeda, D. Tanaka, M. Sakamoto, T. Teranishi, L. W. Smith, C. G. Smith, and Y. Majima, ACS Nano 6, 9972 (2012).
http://dx.doi.org/10.1021/nn303585g
36.
36. Y. Yasutake, K. Kono, M. Kanehara, T. Teranishi, M. R. Buitelaar, C. G. Smith, and Y. Majima, Appl. Phys. Lett. 91, 203107 (2007).
http://dx.doi.org/10.1063/1.2805035
37.
37. V. M. Serdio, Y. Azuma, S. Takeshita, T. Muraki, T. Teranishi, and Y. Majima, Nanoscale 4, 7161 (2012).
http://dx.doi.org/10.1039/c2nr32232c
38.
38. M. Giersig and P. Mulvaney, Langmuir 9, 3408 (1993).
http://dx.doi.org/10.1021/la00036a014
39.
39.See supplementary material at http://dx.doi.org/10.1063/1.4931611 for the additional information of the analysis in the main text.[Supplementary Material]
40.
40. D. V. Averin, A. N. Korotkov, and K. K. Likharev, Phys. Rev. B 44, 6199 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.6199
41.
41. S. Hershfield, J. H. Davies, P. Hyldgaard, C. J. Stanton, and J. W. Wilkins, Phys. Rev. B 47, 1967 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.1967
42.
42. H. Zhang, Y. Yasutake, Y. Shichibu, T. Teranishi, and Y. Majima, Phys. Rev. B 72, 205441 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.205441
43.
43. S. Kano, T. Tada, and Y. Majima, Chem. Soc. Rev. 44, 970987 (2015).
http://dx.doi.org/10.1039/C4CS00204K
44.
44. K.-H. Jung, E. Hase, Y. Yasutake, H.-K. Shin, Y.-S. Kwon, and Y. Majima, Jpn. J. Appl. Phys., Part 2 45, L840 (2006).
http://dx.doi.org/10.1143/JJAP.45.L840
45.
45. X. Li, Y. Yasutake, K. Kono, M. Kanehara, T. Teranishi, and Y. Majima, Jpn. J. Appl. Phys., Part 1 48, 04C180 (2009).
http://dx.doi.org/10.1143/JJAP.48.04C180
46.
46. Y. Yasutake, Z. Shi, T. Okazaki, H. Shinohara, and Y. Majima, Nano Lett. 5, 1057 (2005).
http://dx.doi.org/10.1021/nl050490z
47.
47. V. M. Serdio, T. Muraki, S. Takeshita, D. E. Hurtado, S. Kano, T. Teranishi, and Y. Majima, RSC Adv. 5, 22160 (2015).
http://dx.doi.org/10.1039/C5RA00923E
48.
48. W. R. Smythe, Static and Dynamic Electricity, 2nd ed. ( McGraw-Hill Book Company, Inc., 1950), pp. 118122.
49.
49. M. D. Porter, T. B. Bright, D. L. Allala, and C. E. D. Chidsey, J. Am. Chem. Soc. 109, 3559 (1987).
http://dx.doi.org/10.1021/ja00246a011
http://aip.metastore.ingenta.com/content/aip/journal/jap/118/13/10.1063/1.4931611
Loading
/content/aip/journal/jap/118/13/10.1063/1.4931611
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/118/13/10.1063/1.4931611
2015-10-06
2016-12-04

Abstract

We present the analysis of chemically assembled double-dot single-electron transistors using orthodox model considering offset charges. First, we fabricate chemically assembled single-electron transistors (SETs) consisting of two Au nanoparticles between electroless Au-plated nanogap electrodes. Then, extraordinary stable Coulomb diamonds in the double-dot SETs are analyzed using the orthodox model, by considering offset charges on the respective quantum dots. We determine the equivalent circuit parameters from Coulomb diamonds and drain current vs. drain voltage curves of the SETs. The accuracies of the capacitances and offset charges on the quantum dots are within ±10%, and ±0.04 (where is the elementary charge), respectively. The parameters can be explained by the geometrical structures of the SETs observed using scanning electron microscopy images. Using this approach, we are able to understand the spatial characteristics of the double quantum dots, such as the relative distance from the gate electrode and the conditions for adsorption between the nanogap electrodes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/118/13/1.4931611.html;jsessionid=jktXTNljsARNuPpJ2RyxrPs9.x-aip-live-03?itemId=/content/aip/journal/jap/118/13/10.1063/1.4931611&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/118/13/10.1063/1.4931611&pageURL=http://scitation.aip.org/content/aip/journal/jap/118/13/10.1063/1.4931611'
Right1,Right2,Right3,