Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. P. H. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, Proc. IEEE 98, 2201 (2010).
2. G. Servalli, in IEEE International Electron Devices Meeting (IEDM) ( IEEE, 2009), pp. 14.
3. D. Kang, J.-H. Lee, J. Kong, D. Ha, J. Yu, C. Um, J. Park, F. Yeung, J. Kim, W. Park et al., in Symposium on VLSI Technology ( IEEE, 2008), pp. 9899.
4. N. Papandreou, H. Pozidis, A. Pantazi, A. Sebastian, M. Breitwisch, C. Lam, and E. Eleftheriou, in IEEE International Symposium on Circuits and Systems (ISCAS) ( IEEE, 2011), pp. 329332.
5. H. Pozidis, N. Papandreou, A. Sebastian, T. Mittelholzer, M. Brightsky, C. Lam, and E. Eleftheriou, in 5th IEEE International Memory Workshop (IMW) ( IEEE, New York, NY, 2013), Vol. 1, pp. 100103.
6. G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. D. Happ, J. B. Philipp, and M. Kund, Appl. Phys. Lett. 95, 043108 (2009).
7. I. S. Kim, S. L. Cho, D. H. Im, E. H. Cho, D. H. Kim, G. H. Oh, D. H. Ahn, S. O. Park, S. W. Nam, J. T. Moon, and C. H. Chung, in Symposium on VLSI Technology Digest of Technical Papers (2010), pp. 203204.
8. M. Wuttig and N. Yamada, Nature Mater. 6, 824 (2007).
9. A. Sebastian, N. Papandreou, A. Pantazi, H. Pozidis, and E. Eleftheriou, J. Appl. Phys. 110, 084505 (2011).
10. D. Krebs, S. Raoux, C. T. Rettner, G. W. Burr, M. Salinga, and M. Wuttig, Appl. Phys. Lett. 95, 082101 (2009).
11. A. Pillonnet and R. Ongaro, Rev. Phys. Appl. 25, 229 (1990).
12. R. M. Hill, Philos. Mag. 23, 59 (1971).
13. N. Mott and E. Davis, Electronic Process in Non-Crystalline Semiconductors, 2nd ed. ( Clarendon Press, Oxford, 1979).
14. M. Le Gallo, M. Kaes, A. Sebastian, and D. Krebs, New J. Phys. 17, 093035 (2015).
15. D. Krebs, T. Bachmann, P. Jonnalagadda, L. Dellmann, and S. Raoux, New J. Phys. 16, 043015 (2014).
16. A. Pirovano, A. L. Lacaita, F. Pellizzer, S. A. Kostylev, A. Benvenuti, and R. Bez, IEEE Trans. Electron Devices 51, 714 (2004).
17.See supplementary material at for a validation of the linearity of the current-voltage characteristics at low temperature, measurements of the temperature dependence of the low-field dark conductivity, verification of the field dependence of the extracted values for the PF constant , and the extraction of the activation energy at high electric fields.[Supplementary Material]
18. M. Nardone, M. Simon, I. V. Karpov, and V. G. Karpov, J. Appl. Phys. 112, 071101 (2012).
19. P. Jost, “ Charge transport in phase-change materials,” Ph.D. thesis ( RWTH Aachen University, 2013).
20. D. Ielmini and Y. Zhang, J. Appl. Phys. 102, 054517 (2007).
21. D. Ielmini and Y. Zhang, Appl. Phys. Lett. 90, 192102 (2007).
22. P. Fantini, M. Ferro, A. Calderoni, and S. Brazzelli, Appl. Phys. Lett. 100, 213506 (2012).
23. G. Betti Beneventi, L. Guarino, M. Ferro, and P. Fantini, J. Appl. Phys. 113, 044506 (2013).
24. M. Ieda, G. Sawa, and S. Kato, J. Appl. Phys. 42, 3737 (1971).
25. J. Hartke, J. Appl. Phys. 39, 4871 (1968).
26. S. Kremers, “ Optische Eigenschaften von Phasenwechselmaterialien für zukünftige optische und elektronische Speicheranwendungen,” Ph.D. thesis ( RWTH Aachen University, 2009.
27. J. L. M. Oosthoek, D. Krebs, M. Salinga, D. J. Gravesteijn, G. A. M. Hurkx, and B. J. Kooi, J. Appl. Phys. 112, 084506 (2012).
28. Y. Varhsni, Physica 34, 149 (1967).
29. M. Rütten, M. Kaes, A. Albert, M. Wuttig, and M. Salinga, “ Relation between Bandgap and Resistance drift in amorphous phase-change materials” (to be published).
30. C. Longeaud, J. Luckas, D. Krebs, R. Carius, J. Klomfass, and M. Wuttig, J. Appl. Phys. 112, 113714 (2012).
31. P. Walsh, R. Vogel, and E. Evans, Phys. Rev. 178, 1274 (1969).
32. T. Stubb, T. Suntola, and O. Tiainen, Solid-State Electron. 15, 611 (1972).
33. J. M. Marshall and G. R. Miller, Philos. Mag. 27, 1151 (1973).
34. T. Suntola, Solid-State Electron. 14, 933 (1971).
35. J. Luckas, S. Kremers, D. Krebs, M. Salinga, M. Wuttig, and C. Longeaud, J. Appl. Phys. 110, 013719 (2011).
36. D. Ielmini, Phys. Rev. B 78, 035308 (2008).
37. A. Abakumov, V. Perel, and I. Yassievich, Library, 1st ed., edited by V. Agranovich and A. Maraduddin ( North-Holland, Amsterdam, 1991), Vol. 33.
38. R. Simon, I. Sergueev, I. Kantor, A. Kantor, J. Persson, and R. Hermann, Semicond. Sci. Technol. 29, 124001 (2014).
39. T. Matsunaga, N. Yamada, R. Kojima, S. Shamoto, M. Sato, H. Tanida, T. Uruga, S. Kohara, M. Takata, P. Zalden, G. Bruns, I. Sergueev, H. C. Wille, R. P. Hermann, and M. Wuttig, Adv. Funct. Mater. 21, 2232 (2011).
40. W. Howard and R. Tsu, Phys. Rev. B 1, 4709 (1970).
41. G. Vincent, A. Chantre, and D. Bois, J. Appl. Phys. 50, 5484 (1979).
42. P. A. Martin, B. G. Streetman, and K. Hess, J. Appl. Phys. 52, 7409 (1981).
43. M. Wimmer, “ Transiente Schalt- und Relaxationseffekte in Phasenwechselnanostrukturen,” Ph.D. thesis ( RWTH Aachen University, 2015).

Data & Media loading...


Article metrics loading...



Electrical transport in chalcogenide-based phase change materials is an active area of research owing to the prominent role played by these materials in the field of information technology. Here, we present transport measurements (IV curves) obtained on line-cells of as-deposited amorphous phase change materials (GeSbTe, GeTe, AgInSbTe) over a wide voltage and temperature range (300 K to 160 K). The well defined geometry of our devices enables a description of the transport behavior in terms of conductivity vs. electric field. At higher temperatures (300 K ≥  ≥ 220 K) and low to intermediate fields ( < 20 V/m), the data can be described within the framework of a previously developed model, which is based on multiple trapping transport together with 3D Poole-Frenkel emission from a two-center Coulomb potential. Based on this model, we observe a temperature dependence of the inter-trap distance, which we can relate to a temperature dependence in the occupation of the defect creating the Coulomb potential governing Poole-Frenkel emission. At higher fields and lower temperatures, the dependency of the IV curve on the electric field can be described by ln(/ ) = (/)2. By combining this contribution with that of the Poole-Frenkel emission, we can show that the slope at high fields, , is independent of temperature. We argue that models based on direct tunneling or thermally assisted tunneling from a single defect into the valence band cannot explain the observed behavior quantitatively.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd