Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. F. Zahid, Y. Ke, D. Gall, and H. Guo, Phys. Rev. B 81, 045406 (2010).
2. K. E. Khor and D. Sarma, Phys. Rev. B 62, 16657 (2000).
3. H. Bhaskaran, B. Gotsmann, A. Sebastian, U. Drechsler, M. A. Lantz, M. Despont, P. Jaroenapibal, R. W. Carpick, Y. Chen, and K. Sridharan, Nat. Nanotechnol. 5, 181 (2010).
4. M. Sandhyarani, N. Rameshbabu, K. Venkateswarlu, D. Sreekanth, and Ch. Subrahmanyam, J. Alloy Compd. 553, 324 (2013).
5. A. L. Barabasi and H. E. Stanley, Fractal Concepts in Surface Growth ( Cambridge University Press, Cambridge, 1995).
6. W. Liu, C. W. Wen, X. H. Zhang, J. H. Liu, J. H. Liang, and X. G. Long, Phys. Scr. 90, 035402 (2015).
7. A. Yanguas-Gil, J. Cotrino, A. Barranco, and A. R. González-Elipe, Phys. Rev. Lett. 96, 236101 (2006).
8. T. Karabacak, Y.-P. Zhao, G.-C. Wang, and T.-M. Lu, Phys. Rev. B 66, 075329 (2002).
9. R. A. Lukaszew and R. Clarke, Appl. Surf. Sci. 191, 118 (2002).
10. H. Zhu, Q. L. Li, X. J. She, and S. D. Wang, Appl. Phys. Lett. 98, 243304 (2011).
11. Z. J. Liu and Y. G. Shen, Appl. Phys. Lett. 83, 5404 (2003).
12. J. Xu, L. Yu, and I. Kojima, J. Appl. Phys. 94, 6827 (2003).
13. Z. J. Liu and Y. G. Shen, Appl. Phys. Lett. 84, 5121 (2004).
14. Y. S. Yu, T. A. George, W. L. Li, L. P. Yue, W. D. Fei, Haibo Li, Mei Liu, and D. J. Sellmyer, J. Appl. Phys. 108, 073906 (2010).
15. J. J. Yang, F. M. Miao, J. Tang, X. Y. Shu, F. Ma, K. W. Xu, Y. Y. Yang, J. L. Liao, and N. Liu, Appl. Phys. Lett. 104, 031602 (2014).
16.International Technology Roadmap for Semiconductors,”
17. L. Vázquez, R. C. Salvarezza, E. Albano, Al. J. Arvia, A. H. Creus, R. A. Levy, and J. M. Albella, Chem. Vap. Deposition 4, 89 (1998).<89::AID-CVDE89>3.0.CO;2-9
18. E. S. Machlin, Scr. Mater. 32, 1233 (1995).
19. J. H. Jeffries, J. K. Zuo, and M. M. Craig, Phys. Rev. Lett. 76, 4931 (1996).
20. F. T. N. Vüllers and R. Spolenak, Thin Solid Films 577, 26 (2015).
21. P. Wieciński, J. Smolik, H. Garbacz, and K. J. Kurzydłowski, Surf. Coat. Technol. 240, 23 (2014).
22. L. R. Shaginyan, J. G. Han, V. R. Shaginyan, and J. Musil, J. Vac. Sci. Technol. A 24, 1083 (2006).
23. N. Baguer, V. Georgieva, L. Calderin, I. T. Todorov, S. Van Gils, and A. Bogaerts, J. Cryst. Growth 311, 4034 (2009).
24. P. W. May, N. L. Allan, M. N. R. Ashfold, J. C. Richley, and A. Mankelevich, Diamond Relat. Mater. 19, 389 (2010).
25. J. J. Yang, J. Tang, N. Liu, F. Ma, W. Tang, and K. W. Xu, J. Appl. Phys. 111, 104303 (2012).
26. F. Elsholz, E. Schöll, C. Scharfenorth, G. Seewald, H. J. Eichler, and A. Rosenfeld, J. Appl. Phys. 98, 103516 (2005).
27. J. J. Yang, B. Liu, Y. Wang, and K. W. Xu, Appl. Phys. Lett. 95, 194104 (2009).
28. C. S. Han, B. C. Mohanty, H. R. Choi, and Y. S. Cho, Surf. Coat. Technol. 231, 229 (2013).
29. H. N. Yang, Y. P. Zhao, G. C. Wang, and T. M. Lu, Phys. Rev. Lett. 76, 3774 (1996).
30. C. Streng, K. Samwer, and S. G. Mayr, Phys. Rev. B 73, 104107 (2006).
31. A. E. Lita and J. E. Sanchez, Phys. Rev. B 61, 7692 (2000).
32. L. Armelao, D. Barreca, G. Bottaro, G. Bruno, A. Gasparotto, M. Losurdo, and E. Tondello, Mater. Sci. Eng. C 25, 599 (2005).
33. Y. Ivry, J. F. Scott, E. K. H. Salje, and C. Durkan, Phys. Rev. B 86, 205428 (2012).

Data & Media loading...


Article metrics loading...



Using multi-step deposition mode, we developed an innovational strategy of homogenously multilayered (HM) structure to tailor the roughening kinetics of sputtered W films. Dynamic scaling analysis showed that all sublayers of HM W films exhibited the same anomalous roughening behavior, which originated from the limited surface diffusion. Intriguingly, different from its single-layered counterpart, the HM W films exhibited a suppression effect of kinetic roughening, which could be well manipulated by film modulation period. Detailed experimental characterization and phenomenological model analysis suggested that this roughening suppression arises from the multi-interruption of the continuous film roughening process, forming an interlayer interface after every interruption and restarting the sublayer roughening on the pre-sublayer surface.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd