Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/118/17/10.1063/1.4935288
1.
1. C. D. Murray, Proc. Natl. Acad. Sci. U.S.A. 12, 207 (1926).
http://dx.doi.org/10.1073/pnas.12.3.207
2.
2. G. M. Hutchins, M. M. Miner, and J. K. Boitnott, Circ. Res. 38, 572 (1976).
http://dx.doi.org/10.1161/01.RES.38.6.572
3.
3. G. S. Kassab and Y. B. Fung, Ann. Biomed. Eng. 23, 13 (1995).
http://dx.doi.org/10.1007/BF02368296
4.
4. M. LaBarbera, Science 249, 992 (1990).
http://dx.doi.org/10.1126/science.2396104
5.
5. T. F. Sherman, J. Gen. Physiol. 78, 431 (1981).
http://dx.doi.org/10.1085/jgp.78.4.431
6.
6. M. Zamir and N. Brown, Am. J. Anat. 163, 295 (1982).
http://dx.doi.org/10.1002/aja.1001630403
7.
7. M. Zamir and J. A. Medeiros, J. Gen. Physiol. 79, 353 (1982).
http://dx.doi.org/10.1085/jgp.79.3.353
8.
8. M. Zamir, J. A. Medeiros, and T. K. Cunningham, J. Gen. Physiol. 74, 537 (1979).
http://dx.doi.org/10.1085/jgp.74.4.537
9.
9. M. Zamir, S. M. Wrigley, and B. L. Langille, J. Gen. Physiol. 81, 325 (1983).
http://dx.doi.org/10.1085/jgp.81.3.325
10.
10. T. A. Wilson, Nature 213, 668 (1967).
http://dx.doi.org/10.1038/213668a0
11.
11. K. Horsfield and G. Cumming, Bull. Math. Biophys. 29, 245 (1967).
http://dx.doi.org/10.1007/BF02476898
12.
12. K. Horsfield, F. G. Relea, and G. Gumming, Respir. Physiol. 26, 351 (1976).
http://dx.doi.org/10.1016/0034-5687(76)90005-0
13.
13. K. A. McCulloh, J. S. Sperry, and F. R. Adler, Nature 421, 939 (2003).
http://dx.doi.org/10.1038/nature01444
14.
14. K. A. McCulloh, J. S. Sperry, and F. R. Adler, Funct. Ecol. 18, 931 (2004).
http://dx.doi.org/10.1111/j.0269-8463.2004.00913.x
15.
15. K. A. McCulloh and J. S. Sperry, Am. J. Bot. 92, 985 (2005).
http://dx.doi.org/10.3732/ajb.92.6.985
16.
16. D. R. Emerson, K. Cieślicki, X. Gu, and R. W. Barber, Lab Chip 6, 447 (2006).
http://dx.doi.org/10.1039/b516975e
17.
17. K. Tesch, Task Quarterly 14, 227 (2010).
18.
18. L. Gosselin and A. K. da Silva, J. Appl. Phys. 101, 114902 (2007).
http://dx.doi.org/10.1063/1.2721783
19.
19. C. Renault, S. Colin, S. Orieux, P. Cognet, and T. Tzédakis, Microsyst. Technol. 18, 209 (2012).
http://dx.doi.org/10.1007/s00542-011-1334-7
20.
20. A. Díaz Lantada, B. Pareja Sanchez, C. Gómez Murillo, and J. Urbieta Sotillo, Expert Rev. Med. Devices 10, 629 (2013).
http://dx.doi.org/10.1586/17434440.2013.827506
21.
21. S. M. Senn and D. Poulikakos, J. Power Sources 130, 178 (2004).
http://dx.doi.org/10.1016/j.jpowsour.2003.12.025
22.
22. Y. Chen and P. Cheng, Int. J. Heat Mass Transfer 45, 2643 (2002).
http://dx.doi.org/10.1016/S0017-9310(02)00013-3
23.
23. X. Wang, A. S. Mujumdar, and C. Yap, Int. J. Therm. Sci. 45, 1103 (2006).
http://dx.doi.org/10.1016/j.ijthermalsci.2006.01.010
24.
24. H. R. Williams, R. S. Trask, P. M. Weaver, and I. P. Bond, J. R. Soc. Interface 5, 55 (2008).
http://dx.doi.org/10.1098/rsif.2007.1022
25.
25. A. Kamiya and T. Togawa, Bull. Math. Biophys. 34, 431 (1972).
http://dx.doi.org/10.1007/BF02476705
26.
26. M. Zamir, J. Gen. Physiol. 69, 449 (1977).
http://dx.doi.org/10.1085/jgp.69.4.449
27.
27. A. Bejan, L. A. O. Rocha, and S. Lorente, Int. J. Therm. Sci. 39, 949 (2000).
http://dx.doi.org/10.1016/S1290-0729(00)01176-5
28.
28. D. Lim, Y. Kamotani, B. Cho, J. Mazumder, and S. Takayama, Lab Chip 3, 318 (2003).
http://dx.doi.org/10.1039/b308452c
29.
29. M. Gad-el-Hak, J. Fluids Eng. 121, 5 (1999).
http://dx.doi.org/10.1115/1.2822013
30.
30.To find the optimal branching angle, a second optimization should be performed with the parent inlet and daughter outlets fixed, so the channel lengths and branching angle are functions of the branching point.
31.
31.In both of these cases, there is a non-linear relationship between the pressure gradient and the mass flow rate, however as at least one of these quantities must be constant in the optimization (see Eq. (8)), Eq. (16) is still valid.
32.
32. F. M. White, Viscous Fluid Flow ( McGraw-Hill, 1974).
33.
33. C. Eloy, Phys. Rev. Lett. 107, 258101 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.258101
34.
34. G. Karniadakis, A. Beskok, and N. Aluru, Microflows and Nanoflows: Fundamentals and Simulation ( Springer, 2005).
35.
35. A. T. Conlisk, Essentials of Micro- and Nanofluidics With Applications to the Biological and Chemical Sciences ( Cambridge University Press, 2012).
36.
36. C. Y. Soong, T. H. Yen, and P. Y. Tzeng, Phys. Rev. E 76, 036303 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.036303
37.
37. D. A. Lockerby, J. M. Reese, and M. A. Gallis, Phys. Fluids 17, 100609 (2005).
http://dx.doi.org/10.1063/1.1897005
38.
38. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids ( Clarendon Press, 1987).
39.
39. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford Engineering Science Series Vol. 42 ( Clarendon Press, 1994).
40.
40. D. A. Lockerby, J. M. Reese, D. R. Emerson, and R. W. Barber, Phys. Rev. E 70, 017303 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.017303
41.
41. J. C. Maxwell, Philos. Trans. R. Soc. 170, 231 (1879).
http://dx.doi.org/10.1098/rstl.1879.0067
42.
42. L. Bocquet and E. Charlaix, Chem. Soc. Rev. 39, 1073 (2010).
http://dx.doi.org/10.1039/B909366B
43.
43. K. P. Travis, B. D. Todd, and D. J. Evans, Phys. Rev. E 55, 4288 (1997).
http://dx.doi.org/10.1103/PhysRevE.55.4288
44.
44. C. Huang, P. Y. K. Choi, K. Nandakumar, and L. W. Kostiuk, J. Chem. Phys. 126, 224702 (2007).
http://dx.doi.org/10.1063/1.2739541
45.
45. R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban, Math. Program. 107, 391 (2006).
http://dx.doi.org/10.1007/s10107-004-0560-5
46.
46.Our numerical solver is an in-house code written in MATLAB®, which uses matrix inversion to calculate the mass flow rates. All simulations use a 100 × 100 mesh, which has been shown (via a grid resolution study) to provide mass flow rate solutions to within 1% of the values obtained using a 200 × 200 and 300 × 300 mesh.
47.
47.For our LVDSMC simulations, periodic boundary conditions were used in the streamwise direction, 10 deviational particles were used per cell, and the cell size Δx was chosen to be λ/5. The time-step Δt was set to , where is the most probable thermal velocity.
48.
48. G. A. Radtke, N. G. Hadjiconstantinou, and W. Wagner, Phys. Fluids 23, 030606 (2011).
http://dx.doi.org/10.1063/1.3558887
49.
49. S. K. Loyalka and S. A. Hamoodi, Phys. Fluids A 2, 2061 (1990).
http://dx.doi.org/10.1063/1.857681
50.
50. F. Sharipov, J. Vac. Sci. Technol. A 14, 2627 (1996).
http://dx.doi.org/10.1116/1.579991
51.
51. T. Ohwada, Y. Sone, and K. Aoki, Phys. Fluids 1, 1588 (1989).
http://dx.doi.org/10.1063/1.857304
52.
52. M. Knudsen, Ann. Phys. 333, 75 (1909).
http://dx.doi.org/10.1002/andp.19093330106
53.
53. S. K. Mitra and S. Chakraborty, Microfluidics and Nanofluidics Handbook ( CRC Press, 2012).
http://aip.metastore.ingenta.com/content/aip/journal/jap/118/17/10.1063/1.4935288
Loading
/content/aip/journal/jap/118/17/10.1063/1.4935288
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/118/17/10.1063/1.4935288
2015-11-06
2016-09-27

Abstract

Murray's law states that the volumetric flow rate is proportional to the cube of the radius in a cylindrical channel optimized to require the minimum work to drive and maintain the fluid. However, application of this principle to the biomimetic design of micro/nano fabricated networks requires optimization of channels with arbitrary cross-sectional shape (not just circular) and smaller than is valid for Murray's original assumptions. We present a generalized law for symmetric branching that (a) is valid for any cross-sectional shape, providing that the shape is constant through the network; (b) is valid for slip flow and plug flow occurring at very small scales; and (c) is valid for networks with a constant depth, which is often a requirement for lab-on-a-chip fabrication procedures. By considering limits of the generalized law, we show that the optimum daughter-parent area ratio Γ, for symmetric branching into daughter channels of any constant cross-sectional shape, is for large-scale channels, and for channels with a characteristic length scale much smaller than the slip length. Our analytical results are verified by comparison with a numerical optimization of a two-level network model based on flow rate data obtained from a variety of sources, including Navier-Stokes slip calculations, kinetic theory data, and stochastic particle simulations.

Loading

Full text loading...