Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, Phys. Rev. B 34(6), 4129 (1986).
2. C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Rksi, J. A. Squier, B. C. Walker, K. R. Wilson, and C. P. J. Barty, Nature 398(6725), 310 (1999).
3. A. M. Lindenberg, I. Kang, S. L. Johnson, T. Missalla, P. A. Heimann, Z. Chang, J. Larsson, P. H. Bucksbaum, H. C. Kapteyn, H. A. Padmore, R. W. Lee, J. S. Wark, and R. W. Falcone, Phys. Rev. Lett. 84(1), 111 (2000).
4. J. Larsson, A. Allen, P. H. Bucksbaum, R. W. Falcone, A. Lindenberg, G. Naylor, T. Missalla, D. A. Reis, K. Scheidt, A. Sjögren, P. Sondhauss, M. Wulff, and J. S. Wark, Appl. Phys. A 75(4), 467 (2002).
5. A. M. Lindenberg, I. Kang, S. L. Johnson, R. W. Falcone, P. A. Heimann, Z. Chang, R. W. Lee, and J. S. Wark, Opt. Lett. 27(10), 869 (2002).
6. O. Synnergren, T. N. Hansen, S. Canton, H. Enquist, P. Sondhauss, A. Srivastava, and J. Larsson, Appl. Phys. Lett. 90(17), 171929 (2007).
7. M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, Science 306(5702), 1771 (2004).
8. P. Sondhauss, J. Larsson, M. Harbst, G. A. Naylor, A. Plech, K. Scheidt, O. Synnergren, M. Wulff, and J. S. Wark, Phys. Rev. Lett. 94(12), 125509 (2005).
9. M. Trigo, Y. M. Sheu, D. A. Arms, J. Chen, S. Ghimire, R. S. Goldman, E. Landahl, R. Merlin, E. Peterson, M. Reason, and D. A. Reis, Phys. Rev. Lett. 101(2), 025505 (2008).
10. S. Fahy and R. Merlin, Phys. Rev. Lett. 73(8), 1122 (1994).
11. P. H. Bucksbaum and R. Merlin, Solid State Commun. 111(10), 535 (1999).
12. Y. Gao and M. F. DeCamp, Appl. Phys. Lett. 100(19), 191903 (2012).
13. A. Loether, Y. Gao, Z. Chen, M. F. DeCamp, E. M. Dufresne, D. A. Walko, and H. Wen, Struct. Dyn. 1(2), 024301 (2014).
14. M. Nicoul, U. Shymanovich, A. Tarasevitch, D. von der Linde, and K. Sokolowski-Tinten, Appl. Phys. Lett. 98(19), 191902 (2011).
15. B. C. Daly, N. C. R. Holme, T. Buma, C. Branciard, T. B. Norris, D. M. Tennant, J. A. Taylor, J. E. Bower, and S. Pau, Appl. Phys. Lett. 84(25), 5180 (2004).
16. H. T. Grahn, H. J. Maris, and J. Tauc, IEEE J. Quantum Electron. 25(12), 2562 (1989).
17. R. Shayduk, M. Herzog, A. Bojahr, D. Schick, P. Gaal, W. Leitenberger, H. Navirian, M. Sander, J. Goldshteyn, I. Vrejoiu, and M. Bargheer, Phys. Rev. B 87(18), 184301 (2013).
18. P. Sondhauss, O. Synnergren, T. N. Hansen, S. E. Canton, H. Enquist, A. Srivastava, and J. Larsson, Phys. Rev. B 78(11), 115202 (2008).
19. S. N. Rschevkin, A Course of Lectures on the Theory of Sound ( Pergamon Press Ltd., London, 1963), p. 464.
20. H. Enquist, H. Navirian, T. N. Hansen, A. M. Lindenberg, P. Sondhauss, O. Synnergren, J. S. Wark, and J. Larsson, Phys. Rev. Lett. 98(22), 225502 (2007).
21. M. Harbst, T. N. Hansen, C. Caleman, W. K. Fullagar, P. Jönsson, P. Sondhauss, O. Synnergren, and J. Larsson, Appl. Phys. A 81(5), 893 (2005).
22. H. Enquist, H. Navirian, R. Nüske, C. von Korff Schmising, A. Jurgilaitis, M. Herzog, M. Bargheer, P. Sondhauss, and J. Larsson, Opt. Lett. 35(19), 3219 (2010).
23. J. Larsson, Z. Chang, E. Judd, P. J. Schuck, R. W. Falcone, P. A. Heimann, H. A. Padmore, H. C. Kapteyn, P. H. Bucksbaum, M. M. Murnane, R. W. Lee, A. Machacek, J. S. Wark, X. Liu, and B. Shan, Opt. Lett. 22(13), 1012 (1997).
24. B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54(2), 181 (1993).
25. D. A. Reis, M. F. DeCamp, P. H. Bucksbaum, R. Clarke, E. Dufresne, M. Hertlein, R. Merlin, R. Falcone, H. Kapteyn, M. M. Murnane, J. Larsson, Th. Missalla, and J. S. Wark, Phys. Rev. Lett. 86(14), 3072 (2001).
26. S. A. Stepanov, Proc. SPIE 5536, 16 (2004).
27. J. M. H. Sheppard, P. Sondhauss, R. Merlin, P. Bucksbaum, R. W. Lee, and J. S. Wark, Solid State Commun. 136(3), 181 (2005).
28. M. Herzog, W. Leitenberger, R. Shayduk, R. M. van der Veen, C. J. Milne, S. L. Johnson, I. Vrejoiu, M. Alexe, D. Hesse, and M. Bargheer, Appl. Phys. Lett. 96(16), 161906 (2010).
29. P. Gaal, D. Schick, M. Herzog, A. Bojahr, R. Shayduk, J. Goldshteyn, W. Leitenberger, I. Vrejoiu, D. Khakhulin, M. Wulff, and M. Bargheer, J. Synchrotron Radiat. 21(2), 380 (2014).
30. I. P. S. Martin, G. Rehm, C. Thomas, and R. Bartolini, Phys. Rev. Spec. Top.--Accel. Beams 14(4), 040705 (2011).
31. D. E. Aspnes and A. A. Studna, Phys. Rev. B 27(2), 985 (1983).
32.Physical constants of inorganic compounds,” in CRC Handbook of Chemistry and Physics 95th Edition (Internet Version 2015), edited by W. M. Haynes ( CRC Press/Taylor and Francis, Boca Raton, FL, 2015).
33. L. J. Slutsky and C. W. Garland, Phys. Rev. 113(1), 167 (1959).
34. D. W. Lynch, R. Rosei, and J. H. Weaver, Solid State Commun. 9(24), 2195 (1971).
35.Speed of sound in various media,” in CRC Handbook of Chemistry and Physics, 95th Edition (Internet Version 2015), edited by W. M. Haynes ( RCR Press/Taylor and Francis, Boca Raton, FL, 2015).
36. T. Saito, O. Matsuda, and O. B. Wright, Phys. Rev. B 67(20), 205421 (2003).

Data & Media loading...


Article metrics loading...



The spectrum of laser-generated acoustic phonons in indium antimonide coated with a thin nickel film has been studied using time-resolved x-ray diffraction. Strain pulses that can be considered to be built up from coherent phonons were generated in the nickel film by absorption of short laser pulses. Acoustic reflections at the Ni–InSb interface leads to interference that strongly modifies the resulting phononspectrum. The study was performed with high momentum transfer resolution together with high time resolution. This was achieved by using a third-generation synchrotron radiation source that provided a high-brightness beam and an ultrafast x-ray streak camera to obtain a temporal resolution of 10 ps. We also carried out simulations, using commercial finite element software packages and on-line dynamic diffraction tools. Using these tools, it is possible to calculate the time-resolved x-ray reflectivity from these complicated strain shapes. The acoustic pulses have a peak strain amplitude close to 1%, and we investigated the possibility to use this device as an x-ray switch. At a bright source optimized for hard x-ray generation, the low reflectivity may be an acceptable trade-off to obtain a pulse duration that is more than an order of magnitude shorter.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd