Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/118/18/10.1063/1.4935489
1.
1. G. J. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008).
http://dx.doi.org/10.1038/nmat2090
2.
2. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).
http://dx.doi.org/10.1002/adma.200600527
3.
3. S. Chen and Z. Ren, Mater. Today 16, 387 (2013).
http://dx.doi.org/10.1016/j.mattod.2013.09.015
4.
4. J. de Boor, T. Dasgupta, H. Kolb, C. Compere, K. Kelm, and E. Mueller, Acta Mater. 77, 68 (2014).
http://dx.doi.org/10.1016/j.actamat.2014.05.041
5.
5. J. G. Noudem, S. Quetel-Weben, R. Retoux, G. Chevallier, and C. Estournès, Scr. Mater. 68, 949 (2013).
http://dx.doi.org/10.1016/j.scriptamat.2013.02.059
6.
6. C. J. Vineis, A. Shakouri, A. Majumdar, and M. G. Kanatzidis, Adv. Mater. 22, 3970 (2010).
http://dx.doi.org/10.1002/adma.201000839
7.
7. H. Xie, H. Wang, Y. Pei, C. Fu, X. Liu, G. J. Snyder, X. Zhao, and T. Zhu, Adv. Funct. Mater. 23, 5123 (2013).
http://dx.doi.org/10.1002/adfm.201300663
8.
8. S. Chen, K. C. Lukas, W. Liu, C. P. Opeil, G. Chen, and Z. Ren, Adv. Energy Mater. 3, 1210 (2013).
http://dx.doi.org/10.1002/aenm.201300336
9.
9. Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G. P. Meisner, and C. Uher, Appl. Phys. Lett. 79, 4165 (2001).
http://dx.doi.org/10.1063/1.1425459
10.
10. S. Populoh, M. H. Aguirre, O. C. Brunko, K. Galazka, Y. Lu, and A. Weidenkaff, Scr. Mater. 66, 1073 (2012).
http://dx.doi.org/10.1016/j.scriptamat.2012.03.002
11.
11. Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. a. Dahmen, P. K. Liaw, and Z. P. Lu, Prog. Mater. Sci. 61, 1 (2014).
http://dx.doi.org/10.1016/j.pmatsci.2013.10.001
12.
12. L. J. Santodonato, Y. Zhang, M. Feygenson, C. M. Parish, M. C. Gao, R. J. K. Weber, J. C. Neuefeind, Z. Tang, and P. K. Liaw, Nat. Commun. 6, 5964 (2015).
http://dx.doi.org/10.1038/ncomms6964
13.
13. O. N. Senkov, J. D. Miller, D. B. Miracle, and C. Woodward, Nat. Commun. 6, 6529 (2015).
http://dx.doi.org/10.1038/ncomms7529
14.
14. D. Miracle, J. Miller, O. Senkov, C. Woodward, M. Uchic, and J. Tiley, Entropy 16, 494 (2014).
http://dx.doi.org/10.3390/e16010494
15.
15. F. Zhang, C. Zhang, S. L. Chen, J. Zhu, W. S. Cao, and U. R. Kattner, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 45, 1 (2014).
http://dx.doi.org/10.1016/j.calphad.2013.10.006
16.
16. C. Tong, Y.-L. Chen, J. Yeh, S. Lin, S. Chen, T. Shun, C. Tsau, and S. Chang, Metall. Mater. Trans. A 36, 881 (2005).
http://dx.doi.org/10.1007/s11661-005-0283-0
17.
17. A. Manzoni, H. Daoud, R. Völkl, U. Glatzel, and N. Wanderka, Ultramicroscopy 132, 212 (2013).
http://dx.doi.org/10.1016/j.ultramic.2012.12.015
18.
18. R. Valiev, Nat. Mater. 3, 511 (2004).
http://dx.doi.org/10.1038/nmat1180
19.
19. L.-D. Zhao, V. P. Dravid, and M. G. Kanatzidis, Energy Environ. Sci. 7, 251 (2014).
http://dx.doi.org/10.1039/C3EE43099E
20.
20. B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, and R. O. Ritchie, Science 345, 1153 (2014).
http://dx.doi.org/10.1126/science.1254581
21.
21. K. M. Youssef, A. J. Zaddach, C. Niu, D. L. Irving, and C. C. Koch, Mater. Res. Lett. 3, 95 (2015).
http://dx.doi.org/10.1080/21663831.2014.985855
22.
22. M. J. Yao, K. G. Pradeep, C. C. Tasan, and D. Raabe, Scr. Mater. 72–73, 5 (2014).
http://dx.doi.org/10.1016/j.scriptamat.2013.09.030
23.
23. P. Koželj, S. Vrtnik, A. Jelen, S. Jazbec, Z. Jagličić, S. Maiti, M. Feuerbacher, W. Steurer, and J. Dolinšek, Phys. Rev. Lett. 113, 107001 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.107001
24.
24. Y. Zhang and W. J. Peng, Procedia Eng. 27, 1169 (2012).
http://dx.doi.org/10.1016/j.proeng.2011.12.568
25.
25. M.-H. Tsai, Entropy 15, 5338 (2013).
http://dx.doi.org/10.3390/e15125338
26.
26. G. A. Slack, in CRC Handbook Thermoelectrics, edited by D. M. Rowe ( CRC Press, 1995), pp. 407440.
27.
27. K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, Nature 490, 570 (2012).
http://dx.doi.org/10.1038/nature11645
28.
28. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, Nature 473, 66 (2011).
http://dx.doi.org/10.1038/nature09996
29.
29. S. Guo, C. Ng, J. Lu, and C. T. Liu, J. Appl. Phys. 109, 103505 (2011).
http://dx.doi.org/10.1063/1.3587228
30.
30. S. Guo, Q. Hu, C. Ng, and C. T. Liu, Intermetallics 41, 96 (2013).
http://dx.doi.org/10.1016/j.intermet.2013.05.002
31.
31. F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metals: Transition Metal Alloys (Cohesion and Structure) ( North Holland, 1989).
32.
32. H. P. Chou, Y. S. Chang, S. K. Chen, and J. W. Yeh, Mater. Sci. Eng., B 163, 184 (2009).
http://dx.doi.org/10.1016/j.mseb.2009.05.024
33.
33. Y.-F. F. Kao, S. K. Chen, T.-J. J. Chen, P.-C. C. Chu, J.-W. W. Yeh, and S.-J. J. Lin, J. Alloys Compd. 509, 1607 (2011).
http://dx.doi.org/10.1016/j.jallcom.2010.10.210
34.
34. S. E. Gustafsson, Rev. Sci. Instrum. 62, 797 (1991).
http://dx.doi.org/10.1063/1.1142087
35.
35.See supplementary material at http://dx.doi.org/10.1063/1.4935489 for additional material on thermoelectric properties.[Supplementary Material]
36.
36. S. Guo, C. Ng, Z. Wang, and C. T. Liu, J. Alloys Compd. 583, 410 (2014).
http://dx.doi.org/10.1016/j.jallcom.2013.08.213
37.
37. W. R. Wang, W. L. Wang, and J. W. Yeh, J. Alloys Compd. 589, 143 (2014).
http://dx.doi.org/10.1016/j.jallcom.2013.11.084
38.
38. F. Findik, Mater. Des. 42, 131 (2012).
http://dx.doi.org/10.1016/j.matdes.2012.05.039
39.
39. D. König, C. Eberling, M. Kieschnick, S. Virtanen, and A. Ludwig, Adv. Eng. Mater. 17, 1365 (2015).
http://dx.doi.org/10.1002/adem.201500023
40.
40. H. Jacobi, B. Vassos, and H.-J. Engell, J. Phys. Chem. Solids 30, 1261 (1969).
http://dx.doi.org/10.1016/0022-3697(69)90384-9
41.
41. J. Kondo, Prog. Theor. Phys. 32, 37 (1964).
http://dx.doi.org/10.1143/PTP.32.37
42.
42. C. Li, J. C. Li, M. Zhao, and Q. Jiang, J. Alloys Compd. 504, S515 (2010).
http://dx.doi.org/10.1016/j.jallcom.2010.03.111
43.
43. M. R. Calvo, J. Fernández-Rossier, J. J. Palacios, D. Jacob, D. Natelson, and C. Untiedt, Nature 458, 1150 (2009).
http://dx.doi.org/10.1038/nature07878
http://aip.metastore.ingenta.com/content/aip/journal/jap/118/18/10.1063/1.4935489
Loading
/content/aip/journal/jap/118/18/10.1063/1.4935489
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/118/18/10.1063/1.4935489
2015-11-12
2016-12-05

Abstract

Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/118/18/1.4935489.html;jsessionid=0vtwDhNPMrTq3UGgcg99oR46.x-aip-live-02?itemId=/content/aip/journal/jap/118/18/10.1063/1.4935489&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/118/18/10.1063/1.4935489&pageURL=http://scitation.aip.org/content/aip/journal/jap/118/18/10.1063/1.4935489'
Right1,Right2,Right3,