Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. G. J. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008).
2. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).
3. S. Chen and Z. Ren, Mater. Today 16, 387 (2013).
4. J. de Boor, T. Dasgupta, H. Kolb, C. Compere, K. Kelm, and E. Mueller, Acta Mater. 77, 68 (2014).
5. J. G. Noudem, S. Quetel-Weben, R. Retoux, G. Chevallier, and C. Estournès, Scr. Mater. 68, 949 (2013).
6. C. J. Vineis, A. Shakouri, A. Majumdar, and M. G. Kanatzidis, Adv. Mater. 22, 3970 (2010).
7. H. Xie, H. Wang, Y. Pei, C. Fu, X. Liu, G. J. Snyder, X. Zhao, and T. Zhu, Adv. Funct. Mater. 23, 5123 (2013).
8. S. Chen, K. C. Lukas, W. Liu, C. P. Opeil, G. Chen, and Z. Ren, Adv. Energy Mater. 3, 1210 (2013).
9. Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G. P. Meisner, and C. Uher, Appl. Phys. Lett. 79, 4165 (2001).
10. S. Populoh, M. H. Aguirre, O. C. Brunko, K. Galazka, Y. Lu, and A. Weidenkaff, Scr. Mater. 66, 1073 (2012).
11. Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. a. Dahmen, P. K. Liaw, and Z. P. Lu, Prog. Mater. Sci. 61, 1 (2014).
12. L. J. Santodonato, Y. Zhang, M. Feygenson, C. M. Parish, M. C. Gao, R. J. K. Weber, J. C. Neuefeind, Z. Tang, and P. K. Liaw, Nat. Commun. 6, 5964 (2015).
13. O. N. Senkov, J. D. Miller, D. B. Miracle, and C. Woodward, Nat. Commun. 6, 6529 (2015).
14. D. Miracle, J. Miller, O. Senkov, C. Woodward, M. Uchic, and J. Tiley, Entropy 16, 494 (2014).
15. F. Zhang, C. Zhang, S. L. Chen, J. Zhu, W. S. Cao, and U. R. Kattner, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 45, 1 (2014).
16. C. Tong, Y.-L. Chen, J. Yeh, S. Lin, S. Chen, T. Shun, C. Tsau, and S. Chang, Metall. Mater. Trans. A 36, 881 (2005).
17. A. Manzoni, H. Daoud, R. Völkl, U. Glatzel, and N. Wanderka, Ultramicroscopy 132, 212 (2013).
18. R. Valiev, Nat. Mater. 3, 511 (2004).
19. L.-D. Zhao, V. P. Dravid, and M. G. Kanatzidis, Energy Environ. Sci. 7, 251 (2014).
20. B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, and R. O. Ritchie, Science 345, 1153 (2014).
21. K. M. Youssef, A. J. Zaddach, C. Niu, D. L. Irving, and C. C. Koch, Mater. Res. Lett. 3, 95 (2015).
22. M. J. Yao, K. G. Pradeep, C. C. Tasan, and D. Raabe, Scr. Mater. 72–73, 5 (2014).
23. P. Koželj, S. Vrtnik, A. Jelen, S. Jazbec, Z. Jagličić, S. Maiti, M. Feuerbacher, W. Steurer, and J. Dolinšek, Phys. Rev. Lett. 113, 107001 (2014).
24. Y. Zhang and W. J. Peng, Procedia Eng. 27, 1169 (2012).
25. M.-H. Tsai, Entropy 15, 5338 (2013).
26. G. A. Slack, in CRC Handbook Thermoelectrics, edited by D. M. Rowe ( CRC Press, 1995), pp. 407440.
27. K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, Nature 490, 570 (2012).
28. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, Nature 473, 66 (2011).
29. S. Guo, C. Ng, J. Lu, and C. T. Liu, J. Appl. Phys. 109, 103505 (2011).
30. S. Guo, Q. Hu, C. Ng, and C. T. Liu, Intermetallics 41, 96 (2013).
31. F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metals: Transition Metal Alloys (Cohesion and Structure) ( North Holland, 1989).
32. H. P. Chou, Y. S. Chang, S. K. Chen, and J. W. Yeh, Mater. Sci. Eng., B 163, 184 (2009).
33. Y.-F. F. Kao, S. K. Chen, T.-J. J. Chen, P.-C. C. Chu, J.-W. W. Yeh, and S.-J. J. Lin, J. Alloys Compd. 509, 1607 (2011).
34. S. E. Gustafsson, Rev. Sci. Instrum. 62, 797 (1991).
35.See supplementary material at for additional material on thermoelectric properties.[Supplementary Material]
36. S. Guo, C. Ng, Z. Wang, and C. T. Liu, J. Alloys Compd. 583, 410 (2014).
37. W. R. Wang, W. L. Wang, and J. W. Yeh, J. Alloys Compd. 589, 143 (2014).
38. F. Findik, Mater. Des. 42, 131 (2012).
39. D. König, C. Eberling, M. Kieschnick, S. Virtanen, and A. Ludwig, Adv. Eng. Mater. 17, 1365 (2015).
40. H. Jacobi, B. Vassos, and H.-J. Engell, J. Phys. Chem. Solids 30, 1261 (1969).
41. J. Kondo, Prog. Theor. Phys. 32, 37 (1964).
42. C. Li, J. C. Li, M. Zhao, and Q. Jiang, J. Alloys Compd. 504, S515 (2010).
43. M. R. Calvo, J. Fernández-Rossier, J. J. Palacios, D. Jacob, D. Natelson, and C. Untiedt, Nature 458, 1150 (2009).

Data & Media loading...


Article metrics loading...



Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd