Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. C. Jamieson, Science 140, 72 (1963).
2. J. Silcock, Acta Metall. 6, 481 (1958).
3. A. Jayaraman, W. Klement, and G. Kennedy, Phys. Rev. 131, 644 (1963).
4. J. Goldak, L. T. Lloyd, and C. S. Barrett, Phys. Rev. 144, 478 (1966).
5. Y. K. Vohra, S. K. Sikka, and R. Chidambaram, J. Phys. F: Metal Phys. 9, 1771 (1979).
6. J. K. Fink and L. Leibowitz, J. Nucl. Mater. 226, 44 (1995).
7. W. Liu, B. Li, L. Wang, J. Zhang, and Y. Zhao, J. Appl. Phys. 104, 076102 (2008).
8. G. Jyoti, R. Tewari, K. Joshi, D. Srivastava, G. Dey, S. Gupta, S. Sikka, and S. Banerjee, Defect Diffus. Forum 279, 133 (2008).
9. N. Velisavljevic, G. N. Chesnut, D. M. Dattelbaum, Y. K. Vohra, A. Stemshorn, M. Elert, M. D. Furnish, W. W. Anderson, W. G. Proud, and W. T. Butler, AIP Conf. Proc. 1195, 1213 (2009).
10. P. A. Rigg, C. W. Greeff, M. D. Knudson, G. T. Gray, and R. S. Hixson, J. Appl. Phys. 106, 123532 (2009).
11. H.-R. Wenk, P. Kaercher, W. Kanitpanyacharoen, E. Zepeda-Alarcon, and Y. Wang, Phys. Rev. Lett. 111, 195701 (2013).
12. V. D. Blank and E. I. Estrin, Phase Transitions in Solids Under High Pressure ( CRC Press, Boca Raton, Florida, USA, 2014).
13. J. Zhang, Y. Zhao, P. A. Rigg, R. S. Hixson, and G. T. Gray, J. Phys. Chem. Solids 68, 2297 (2007).
14. N. Velisavljevic, G. N. Chesnut, L. L. Stevens, and D. M. Dattelbaum, J. Phys.: Condens. Matter 23, 125402 (2011).
15. S. K. Sikka, Y. K. Vohra, and R. Chidambaram, Prog. Mater. Sci. 27, 245 (1982).
16. H. Xia, A. L. Ruoff, and Y. K. Vohra, Phys. Rev. B 44, 10374(R) (1991).
17. A. K. Singh, Bull. Mater. Sci. 5, 219 (1983).
18. H. Zong, T. Lookman, X. Ding, C. Nisoli, D. Brown, S. R. Niezgoda, and S. Jun, Acta Mater. 77, 191 (2014).
19. D. Trinkle, R. Hennig, S. Srinivasan, D. Hatch, M. Jones, H. Stokes, R. Albers, and J. Wilkins, Phys. Rev. Lett. 91, 025701 (2003).
20. D. R. Trinkle, “ A theoretical study of the hcp to omega martensitic phase transition in titanium,” Ph.D. dissertation ( Ohio State University, 2003).
21. B. S. Hickman, J. Mater. Sci. 4, 554 (1969).
22. B. L. Davis and L. H. Adams, J. Geophys. Res. 70, 433, doi:10.1029/JZ070i002p00433 (1965).
23. N. S. Brar and H. H. Schloessin, Can. J. Earth Sci. 16, 1402 (1979).
24. A. Onodera, Rev. Phys. Chem. Japan 41, 1 (1972).
25. J. Osugi, K. Hara, and M. Katayama, Bull. Inst. Chem. Res. Kyoto Univ. 53, 269 (1975).
26. C. Divakar, M. Mohan, and A. K. Singh, J. Appl. Phys. 56, 2337 (1984).
27. A. Singh, Mater. Sci. Forum 3, 291 (1985).
28. M. Mohan, C. Divakar, and A. K. Singh, Physica B+C 139–140, 253 (1986).
29. A. K. Singh, High Pressure Res. 4, 336 (1990).
30. M. Mohan and A. K. Singh, in Advances in High Pressure Science & Technology, edited by A. K. Singh ( McGraw-Hill, Bangalore, India, 1994).
31. T. Krüger, B. Merkau, W. A. Grosshans, and W. B. Holzapfel, High Pressure Res. 2, 193 (1990).
32. D.-H. Huang, X.-R. Liu, L. Su, Y. Hu, S.-J. LV, H.-L. Liu, and S.-M. Hong, Chin. Phys. Lett. 24, 2441 (2007).
33. D. H. Huang, X. R. Liu, L. Su, C. G. Shao, R. Jia, and S. M. Hong, J. Phys. D: Appl. Phys. 40, 5327 (2007).
34. M. Avrami, J. Chem. Phys. 7, 1103 (1939).
35. M. Avrami, J. Chem. Phys. 8, 212 (1940).
36. P. J. Clemm and J. C. Fisher, Acta Metall. 3, 70 (1955).
37. J. W. Cahn, Acta Metall. 4, 449 (1956).
38. W. J. Evans, C.-S. Yoo, G. W. Lee, H. Cynn, M. J. Lipp, and K. Visbeck, Rev. Sci. Instrum. 78, 73904 (2007).
39. N. Velisavljevic, S. Macleod, and H. Cynn, in Titanium Alloys - Towards Achieving Enhanced Properties for Diversified Applications ( InTech, 2008), Chap. 4.
40. W. B. Holzapfel, P. Taylor, and W. B. Holzapfel, High Pressure Res. 30, 372 (2010).
41. V. L. Solozhenko, O. O. Kurakevych, P. S. Sokolov, and A. N. Baranov, J. Phys. Chem. A 115, 4354 (2011).
42. C.-M. Sung and G. Burns, Tectonophysics 31, 1 (1976).
43. N. Shankaraiah, K. P. N. Murthy, T. Lookman, and S. R. Shenoy, Europhys. Lett. 92, 36002 (2010).
44. D. Errandonea, Y. Meng, M. Somayazulu, and D. Häusermann, Phys. B 355, 116 (2005).
45. J. Escobedo, E. Cerreta, C. Trujillo, D. Martinez, R. Lebensohn, V. Webster, and G. Gray, Acta Mater. 60, 4379 (2012).
46. E. K. Cerreta, J. P. Escobedo, P. A. Rigg, F. L. Addessio, T. Lookman, C. A. Bronkhorst, C. P. Trujillo, D. W. Brown, P. O. Dickerson, R. M. Dickerson, and G. T. Gray III, in Proceedings of DYMAT 2012 Conference ( EDP Sciences–Web Of Conferences, 2012), Vol. 836.
47. E. Cerreta, J. Escobedo, P. Rigg, C. Trujillo, D. Brown, T. Sisneros, B. Clausen, M. Lopez, T. Lookman, C. Bronkhorst, and F. Addessio, Acta Mater. 61, 7712 (2013).
48. N. Velisavljevic, M. K. Jacobsen, and Y. K. Vohra, Mater. Res. Express 1, 035044 (2014).

Data & Media loading...


Article metrics loading...



Diamond anvil cells(DAC) coupled with x-ray diffraction(XRD) measurements are one of the primary techniques for investigating structural stability of materials at high pressure-temperature (P-T) conditions. DAC-XRD has been predominantly used to resolve structural information at set P-T conditions and, consequently, provides P-T phase diagram information on a broad range of materials. With advances in large scale synchrotron x-ray facilities and corresponding x-ray diagnostic capabilities, it is now becoming possible to perform sub-second time resolved measurements on micron sized DAC samples. As a result, there is an opportunity to gain valuable information about the kinetics of structural phase transformations and extend our understanding of material behavior at high P-T conditions. Using DAC-XRD time resolved measurements, we have investigated the kinetics of the to transformation in zirconium. We observe a clear time and pressure dependence in the martensitic transition as a function of pressure-jump, i.e., drive pressure. The resulting data are fit using available kinetics models, which can provide further insight into transformation mechanism that influence transformation kinetics. Our results help shed light on the discrepancies observed in previous measurements of the transition pressure in zirconium.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd