Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/118/2/10.1063/1.4926724
1.
1. J. C. Jamieson, Science 140, 72 (1963).
http://dx.doi.org/10.1126/science.140.3562.72
2.
2. J. Silcock, Acta Metall. 6, 481 (1958).
http://dx.doi.org/10.1016/0001-6160(58)90111-1
3.
3. A. Jayaraman, W. Klement, and G. Kennedy, Phys. Rev. 131, 644 (1963).
http://dx.doi.org/10.1103/PhysRev.131.644
4.
4. J. Goldak, L. T. Lloyd, and C. S. Barrett, Phys. Rev. 144, 478 (1966).
http://dx.doi.org/10.1103/PhysRev.144.478
5.
5. Y. K. Vohra, S. K. Sikka, and R. Chidambaram, J. Phys. F: Metal Phys. 9, 1771 (1979).
http://dx.doi.org/10.1088/0305-4608/9/9/008
6.
6. J. K. Fink and L. Leibowitz, J. Nucl. Mater. 226, 44 (1995).
http://dx.doi.org/10.1016/0022-3115(95)00110-7
7.
7. W. Liu, B. Li, L. Wang, J. Zhang, and Y. Zhao, J. Appl. Phys. 104, 076102 (2008).
http://dx.doi.org/10.1063/1.2987001
8.
8. G. Jyoti, R. Tewari, K. Joshi, D. Srivastava, G. Dey, S. Gupta, S. Sikka, and S. Banerjee, Defect Diffus. Forum 279, 133 (2008).
http://dx.doi.org/10.4028/www.scientific.net/DDF.279.133
9.
9. N. Velisavljevic, G. N. Chesnut, D. M. Dattelbaum, Y. K. Vohra, A. Stemshorn, M. Elert, M. D. Furnish, W. W. Anderson, W. G. Proud, and W. T. Butler, AIP Conf. Proc. 1195, 1213 (2009).
10.
10. P. A. Rigg, C. W. Greeff, M. D. Knudson, G. T. Gray, and R. S. Hixson, J. Appl. Phys. 106, 123532 (2009).
http://dx.doi.org/10.1063/1.3267325
11.
11. H.-R. Wenk, P. Kaercher, W. Kanitpanyacharoen, E. Zepeda-Alarcon, and Y. Wang, Phys. Rev. Lett. 111, 195701 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.195701
12.
12. V. D. Blank and E. I. Estrin, Phase Transitions in Solids Under High Pressure ( CRC Press, Boca Raton, Florida, USA, 2014).
13.
13. J. Zhang, Y. Zhao, P. A. Rigg, R. S. Hixson, and G. T. Gray, J. Phys. Chem. Solids 68, 2297 (2007).
http://dx.doi.org/10.1016/j.jpcs.2007.06.016
14.
14. N. Velisavljevic, G. N. Chesnut, L. L. Stevens, and D. M. Dattelbaum, J. Phys.: Condens. Matter 23, 125402 (2011).
http://dx.doi.org/10.1088/0953-8984/23/12/125402
15.
15. S. K. Sikka, Y. K. Vohra, and R. Chidambaram, Prog. Mater. Sci. 27, 245 (1982).
http://dx.doi.org/10.1016/0079-6425(82)90002-0
16.
16. H. Xia, A. L. Ruoff, and Y. K. Vohra, Phys. Rev. B 44, 10374(R) (1991).
http://dx.doi.org/10.1103/PhysRevB.44.10374
17.
17. A. K. Singh, Bull. Mater. Sci. 5, 219 (1983).
http://dx.doi.org/10.1007/BF02744037
18.
18. H. Zong, T. Lookman, X. Ding, C. Nisoli, D. Brown, S. R. Niezgoda, and S. Jun, Acta Mater. 77, 191 (2014).
http://dx.doi.org/10.1016/j.actamat.2014.05.049
19.
19. D. Trinkle, R. Hennig, S. Srinivasan, D. Hatch, M. Jones, H. Stokes, R. Albers, and J. Wilkins, Phys. Rev. Lett. 91, 025701 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.025701
20.
20. D. R. Trinkle, “ A theoretical study of the hcp to omega martensitic phase transition in titanium,” Ph.D. dissertation ( Ohio State University, 2003).
21.
21. B. S. Hickman, J. Mater. Sci. 4, 554 (1969).
http://dx.doi.org/10.1007/BF00550217
22.
22. B. L. Davis and L. H. Adams, J. Geophys. Res. 70, 433, doi:10.1029/JZ070i002p00433 (1965).
http://dx.doi.org/10.1029/JZ070i002p00433
23.
23. N. S. Brar and H. H. Schloessin, Can. J. Earth Sci. 16, 1402 (1979).
http://dx.doi.org/10.1139/e79-125
24.
24. A. Onodera, Rev. Phys. Chem. Japan 41, 1 (1972).
25.
25. J. Osugi, K. Hara, and M. Katayama, Bull. Inst. Chem. Res. Kyoto Univ. 53, 269 (1975).
26.
26. C. Divakar, M. Mohan, and A. K. Singh, J. Appl. Phys. 56, 2337 (1984).
http://dx.doi.org/10.1063/1.334270
27.
27. A. Singh, Mater. Sci. Forum 3, 291 (1985).
http://dx.doi.org/10.4028/www.scientific.net/MSF.3.291
28.
28. M. Mohan, C. Divakar, and A. K. Singh, Physica B+C 139–140, 253 (1986).
http://dx.doi.org/10.1016/0378-4363(86)90570-X
29.
29. A. K. Singh, High Pressure Res. 4, 336 (1990).
http://dx.doi.org/10.1080/08957959008246114
30.
30. M. Mohan and A. K. Singh, in Advances in High Pressure Science & Technology, edited by A. K. Singh ( McGraw-Hill, Bangalore, India, 1994).
31.
31. T. Krüger, B. Merkau, W. A. Grosshans, and W. B. Holzapfel, High Pressure Res. 2, 193 (1990).
http://dx.doi.org/10.1080/08957959008203173
32.
32. D.-H. Huang, X.-R. Liu, L. Su, Y. Hu, S.-J. LV, H.-L. Liu, and S.-M. Hong, Chin. Phys. Lett. 24, 2441 (2007).
http://dx.doi.org/10.1088/0256-307X/24/8/078
33.
33. D. H. Huang, X. R. Liu, L. Su, C. G. Shao, R. Jia, and S. M. Hong, J. Phys. D: Appl. Phys. 40, 5327 (2007).
http://dx.doi.org/10.1088/0022-3727/40/17/047
34.
34. M. Avrami, J. Chem. Phys. 7, 1103 (1939).
http://dx.doi.org/10.1063/1.1750380
35.
35. M. Avrami, J. Chem. Phys. 8, 212 (1940).
http://dx.doi.org/10.1063/1.1750631
36.
36. P. J. Clemm and J. C. Fisher, Acta Metall. 3, 70 (1955).
http://dx.doi.org/10.1016/0001-6160(55)90014-6
37.
37. J. W. Cahn, Acta Metall. 4, 449 (1956).
http://dx.doi.org/10.1016/0001-6160(56)90041-4
38.
38. W. J. Evans, C.-S. Yoo, G. W. Lee, H. Cynn, M. J. Lipp, and K. Visbeck, Rev. Sci. Instrum. 78, 73904 (2007).
http://dx.doi.org/10.1063/1.2751409
39.
39. N. Velisavljevic, S. Macleod, and H. Cynn, in Titanium Alloys - Towards Achieving Enhanced Properties for Diversified Applications ( InTech, 2008), Chap. 4.
40.
40. W. B. Holzapfel, P. Taylor, and W. B. Holzapfel, High Pressure Res. 30, 372 (2010).
http://dx.doi.org/10.1080/08957959.2010.494845
41.
41. V. L. Solozhenko, O. O. Kurakevych, P. S. Sokolov, and A. N. Baranov, J. Phys. Chem. A 115, 4354 (2011).
http://dx.doi.org/10.1021/jp201544f
42.
42. C.-M. Sung and G. Burns, Tectonophysics 31, 1 (1976).
http://dx.doi.org/10.1016/0040-1951(76)90165-7
43.
43. N. Shankaraiah, K. P. N. Murthy, T. Lookman, and S. R. Shenoy, Europhys. Lett. 92, 36002 (2010).
http://dx.doi.org/10.1209/0295-5075/92/36002
44.
44. D. Errandonea, Y. Meng, M. Somayazulu, and D. Häusermann, Phys. B 355, 116 (2005).
http://dx.doi.org/10.1016/j.physb.2004.10.030
45.
45. J. Escobedo, E. Cerreta, C. Trujillo, D. Martinez, R. Lebensohn, V. Webster, and G. Gray, Acta Mater. 60, 4379 (2012).
http://dx.doi.org/10.1016/j.actamat.2012.05.001
46.
46. E. K. Cerreta, J. P. Escobedo, P. A. Rigg, F. L. Addessio, T. Lookman, C. A. Bronkhorst, C. P. Trujillo, D. W. Brown, P. O. Dickerson, R. M. Dickerson, and G. T. Gray III, in Proceedings of DYMAT 2012 Conference ( EDP Sciences–Web Of Conferences, 2012), Vol. 836.
47.
47. E. Cerreta, J. Escobedo, P. Rigg, C. Trujillo, D. Brown, T. Sisneros, B. Clausen, M. Lopez, T. Lookman, C. Bronkhorst, and F. Addessio, Acta Mater. 61, 7712 (2013).
http://dx.doi.org/10.1016/j.actamat.2013.09.009
48.
48. N. Velisavljevic, M. K. Jacobsen, and Y. K. Vohra, Mater. Res. Express 1, 035044 (2014).
http://dx.doi.org/10.1088/2053-1591/1/3/035044
http://aip.metastore.ingenta.com/content/aip/journal/jap/118/2/10.1063/1.4926724
Loading
/content/aip/journal/jap/118/2/10.1063/1.4926724
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/118/2/10.1063/1.4926724
2015-07-13
2016-09-25

Abstract

Diamond anvil cells(DAC) coupled with x-ray diffraction(XRD) measurements are one of the primary techniques for investigating structural stability of materials at high pressure-temperature (P-T) conditions. DAC-XRD has been predominantly used to resolve structural information at set P-T conditions and, consequently, provides P-T phase diagram information on a broad range of materials. With advances in large scale synchrotron x-ray facilities and corresponding x-ray diagnostic capabilities, it is now becoming possible to perform sub-second time resolved measurements on micron sized DAC samples. As a result, there is an opportunity to gain valuable information about the kinetics of structural phase transformations and extend our understanding of material behavior at high P-T conditions. Using DAC-XRD time resolved measurements, we have investigated the kinetics of the to transformation in zirconium. We observe a clear time and pressure dependence in the martensitic transition as a function of pressure-jump, i.e., drive pressure. The resulting data are fit using available kinetics models, which can provide further insight into transformation mechanism that influence transformation kinetics. Our results help shed light on the discrepancies observed in previous measurements of the transition pressure in zirconium.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/118/2/1.4926724.html;jsessionid=nV6u1t8P-2o9VO1lcTCmVCCu.x-aip-live-03?itemId=/content/aip/journal/jap/118/2/10.1063/1.4926724&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/118/2/10.1063/1.4926724&pageURL=http://scitation.aip.org/content/aip/journal/jap/118/2/10.1063/1.4926724'
Right1,Right2,Right3,