Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/118/20/10.1063/1.4936349
1.
1. J. Hutchby and M. Garner, in Assessment of the Potential & Maturity of Selected Emerging Research Memory Technologies Workshop & ERD/ERM Working Group Meeting, 6–7 April 2010 (ITRS, 2010), p. 1.
2.
2. Y. Yang, J. Ouyang, L. Ma, R. J. H. Tseng, and C. W. Chu, Adv. Funct. Mater. 16, 1001 (2006).
http://dx.doi.org/10.1002/adfm.200500429
3.
3. J. C. Scott and L. D. Bozano, Adv. Mater. 19, 1452 (2007).
http://dx.doi.org/10.1002/adma.200602564
4.
4. B. Cho, T.-W. Kim, S. Song, Y. Ji, M. Jo, H. Hwang, G.-Y. Jung, and T. Lee, Adv. Mater. 22, 1228 (2010).
http://dx.doi.org/10.1002/adma.200903203
5.
5. B. Cho, S. Song, Y. Ji, T. W. Kim, and T. Lee, Adv. Funct. Mater. 21, 2806 (2011).
http://dx.doi.org/10.1002/adfm.201100686
6.
6. W.-P. Lin, S.-J. Liu, T. Gong, Q. Zhao, and W. Huang, Adv. Mater. 26, 570 (2014).
http://dx.doi.org/10.1002/adma.201302637
7.
7. P. Heremans, G. H. Gelinck, R. Muller, K. J. Baeg, D. Y. Kim, and Y. Y. Noh, Chem. Mater. 23, 341 (2011).
http://dx.doi.org/10.1021/cm102006v
8.
8. D.-J. Liaw, K.-L. Wang, Y.-C. Huang, K.-R. Lee, J.-Y. Lai, and C.-S. Ha, Prog. Polym. Sci. 37, 907 (2012).
http://dx.doi.org/10.1016/j.progpolymsci.2012.02.005
9.
9. T. Kurosawa, T. Higashihara, and M. Ueda, Polym. Chem. 4, 16 (2013).
http://dx.doi.org/10.1039/C2PY20632C
10.
10. B. Cho, S. Song, Y. Ji, and T. Lee, Appl. Phys. Lett. 97, 063305 (2010).
http://dx.doi.org/10.1063/1.3478840
11.
11. N. Knorr, A. Bamedi, Z. Karipidou, R. Wirtz, M. Sarpasan, S. Rosselli, and G. Nelles, J. Appl. Phys. 114, 124510 (2013).
http://dx.doi.org/10.1063/1.4823851
12.
12. P. Siebeneicher, H. Kleemann, K. Leo, and B. Lüssem, Appl. Phys. Lett. 100, 193301 (2012).
http://dx.doi.org/10.1063/1.4712057
13.
13. S. H. Ko, C. H. Yoo, and T. W. Kim, J. Electrochem. Soc. 159, G93 (2012).
http://dx.doi.org/10.1149/2.074208jes
14.
14. S. Karthauser, B. Lüssem, M. Weides, M. Alba, A. Besmehn, R. Oligschlaeger, and R. Waser, J. Appl. Phys. 100, 094504 (2006).
http://dx.doi.org/10.1063/1.2364036
15.
15. F. Verbakel, S. C. J. Meskers, R. A. J. Janssen, H. L. Gomes, M. Cölle, M. Büchel, and D. M. de Leeuw, Appl. Phys. Lett. 91, 192103 (2007).
http://dx.doi.org/10.1063/1.2806275
16.
16. T. W. Hickmott, J. Appl. Phys. 88, 2805 (2000).
http://dx.doi.org/10.1063/1.1287116
17.
17. Q. Chen, H. L. Gomes, P. R. F. Rocha, D. M. de Leeuw, and S. C. J. Meskers, Appl. Phys. Lett. 102, 153509 (2013).
http://dx.doi.org/10.1063/1.4802485
18.
18. M. D. Pickett and R. S. Williams, Nanotechnology 23, 215202 (2012).
http://dx.doi.org/10.1088/0957-4484/23/21/215202
19.
19. T. W. Hickmott, J. Appl. Phys. 33, 2669 (1962).
http://dx.doi.org/10.1063/1.1702530
20.
20. G. Dearnaley, A. M. Stoneham, and D. V. Morgan, Rep. Prog. Phys. 33, 1129 (1970).
http://dx.doi.org/10.1088/0034-4885/33/3/306
21.
21. D. P. Oxley, Electrocomponent Sci. Technol. 3, 217 (1977).
http://dx.doi.org/10.1155/APEC.3.217
22.
22. H. Pagnia and N. Sotnik, Phys. Status Solidi 108, 11 (1988).
http://dx.doi.org/10.1002/pssa.2211080102
23.
23. S. L. M. van Mensfoort, J. Billen, S. I. E. Vulto, R. A. J. Janssen, and R. Coehoorn, Phys. Rev. B 80, 033202 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.033202
24.
24. T. J. Mego, Rev. Sci. Instrum. 57, 2798 (1986).
http://dx.doi.org/10.1063/1.1139046
25.
25. K. Ziegler and E. Klausmann, Appl. Phys. Lett. 26, 400 (1975).
http://dx.doi.org/10.1063/1.88193
26.
26. B. F. Bory, S. C. J. Meskers, R. A. J. Janssen, H. L. Gomes, and D. M. de Leeuw, Appl. Phys. Lett. 97, 222106 (2010).
http://dx.doi.org/10.1063/1.3520517
27.
27. R. J. de Vries, S. L. M. van Mensfoort, R. A. J. Janssen, and R. Coehoorn, Phys. Rev. B 81, 125203 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.125203
28.
28. Q. Chen, B. F. Bory, A. Kiazadeh, P. R. F. Rocha, H. L. Gomes, F. Verbakel, D. M. De Leeuw, and S. C. J. Meskers, Appl. Phys. Lett. 99, 083305 (2011).
http://dx.doi.org/10.1063/1.3628301
29.
29. S. L. M. van Mensfoort, S. I. E. Vulto, R. A. J. Janssen, and R. Coehoorn, Phys. Rev. B 78, 085208 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.085208
30.
30. M. M. Mandoc, B. de Boer, G. Paasch, and P. W. M. Blom, Phys. Rev. B 75, 193202 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.193202
31.
31. T. W. Hickmott, J. Appl. Phys. 36, 18851969 (1965).
http://dx.doi.org/10.1063/1.1714372
32.
32. H. Bieberman, Vacuum 26, 513 (1976).
http://dx.doi.org/10.1016/S0042-207X(76)81130-X
33.
33. T. W. Hickmott, J. Appl. Phys. 114, 233702 (2013).
http://dx.doi.org/10.1063/1.4848099
34.
34. L. Eckertova, Phys. Status Solidi 18, 340 (1966).
http://dx.doi.org/10.1002/pssb.19660180102
35.
35. A. Stashans, E. Kotomin, and J.-L. Calais, Phys. Rev. B 49, 14854 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14854
36.
36. T. W. Hickmott, J. Appl. Phys. 106, 103719 (2009).
http://dx.doi.org/10.1063/1.3262619
37.
37. H. S. Lee, S. G. Choi, H. H. Park, and M. J. Rozenberg, Sci. Rep. 3, 1704 (2013).
http://dx.doi.org/10.1038/srep01704
38.
38. A. Odagawa, H. Sato, I. H. Inoue, H. Akoh, M. Kawasaki, Y. Tokura, T. Kanno, and H. Adachi, Phys. Rev. B 70, 224403 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.224403
39.
39. S. Nigo, M. Kubota, Y. Harada, T. Hirayama, S. Kato, H. Kitazawa, and G. Kido, J. Appl. Phys. 112, 033711 (2012).
http://dx.doi.org/10.1063/1.4745048
40.
40. H. Momida, S. Nigo, G. Kido, and T. Ohno, Appl. Phys. Lett. 98, 042102 (2011).
http://dx.doi.org/10.1063/1.3548549
41.
41. M. Cölle, M. Büchel, and D. M. de Leeuw, Org. Electron. 7, 305 (2006).
http://dx.doi.org/10.1016/j.orgel.2006.03.014
42.
42. H. L. Gomes, P. R. F. Rocha, A. Kiazadeh, D. M. De Leeuw, and S. C. J. Meskers, J. Phys. D: Appl. Phys. 44, 25103 (2011).
http://dx.doi.org/10.1088/0022-3727/44/2/025103
43.
43. O. Kurnosikov, F. C. de Nooij, P. LeClair, J. T. Kohlhepp, B. Koopmans, H. J. M. Swagten, and W. J. M. de Jonge, Phys. Rev. B 64, 153407 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.153407
44.
44. P. R. F. Rocha, H. L. Gomes, L. K. J. Vandamme, Q. Chen, A. Kiazadeh, D. M. de Leeuw, and S. C. J. Meskers, IEEE Trans. Electron Devices 59, 2483 (2012).
http://dx.doi.org/10.1109/TED.2012.2204059
45.
45. Y. Song, H. Jeong, J. Jang, T.-Y. Kim, D. Yoo, Y. Kim, H. Jeong, and T. Lee, ACS Nano 9, 7697 (2015).
http://dx.doi.org/10.1021/acsnano.5b03168
46.
46. M. Nardone, V. I. Kozub, I. V. Karpov, and V. G. Karpov, Phys. Rev. B 79, 165206 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.165206
47.
47. F. N. Hooge, T. G. M. Kleinpenning, and L. K. J. Vandamme, Rep. Prog. Phys. 44, 479 (1981).
http://dx.doi.org/10.1088/0034-4885/44/5/001
48.
48. D. Wolf and E. Holler, J. Appl. Phys. 38, 189 (1967).
http://dx.doi.org/10.1063/1.1708950
49.
49. X. G. Jiang, M. A. Dubson, and J. C. Garland, Phys. Rev. B 42, 5427 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.5427
50.
50. H. Kohlstedt, K. H. Gundlach, and S. Kuriki, J. Appl. Phys. 73, 2564 (1993).
http://dx.doi.org/10.1063/1.353066
51.
51. M. J. Kirton and I. I. Uren, Adv. Phys. 38, 367 (1989).
http://dx.doi.org/10.1080/00018738900101122
52.
52. R. Soni, P. Meuffels, A. Petraru, M. Weides, C. Kügeler, R. Waser, and H. Kohlstedt, J. Appl. Phys. 107, 024517 (2010).
http://dx.doi.org/10.1063/1.3291132
53.
53. M. V. Fedorov and A. A. Kornyshev, Chem. Rev. 114, 29783036 (2014).
http://dx.doi.org/10.1021/cr400374x
54.
54. A. Grzybowski, E. Gwoddz, and A. Brodka, Phys. Rev. 61, 67066712 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.6706
55.
55. J. M. Borwein, M. L. Glasser, R. C. McPhedran, J. G. Wan, and I. J. Zucker, Lattice Sums then and Now ( Cambridge University Press, Cambridge, 2013).
56.
56. S. Altieri, L. H. Tjeng, F. C. Voogt, T. Hibma, and G. A. Sawatzky, Phys. Rev. B 59, R2517R2520 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.R2517
57.
57. D. Chowdhury and D. Stauffer, Principles of Equilibrium Statistical Mechanics ( Wiley-VCH, Weinheim, 2000).
58.
58. R. J. Baxter, Exactly Solved Models in Statistical Mechanics ( Academic Press, London, 1982).
59.
59. P. R. F. Rocha, H. L. Gomes, K. Asadi, I. Katsouras, B. Bory, F. Verbakel, P. Van De Weijer, D. M. de Leeuw, and S. C. J. Meskers, Org. Electron. 20, 89 (2015).
http://dx.doi.org/10.1016/j.orgel.2015.02.009
60.
60. B. F. Bory, P. R. F. Rocha, R. A. J. Janssen, H. L. Gomes, D. M. De Leeuw, and S. C. J. Meskers, Appl. Phys. Lett. 105, 123302 (2014).
http://dx.doi.org/10.1063/1.4896636
61.
61. B. F. Bory, J. Wang, H. L. Gomes, R. A. J. Janssen, D. M. De Leeuw, and S. C. J. Meskers, Appl. Phys. Lett. 105, 233502 (2014).
http://dx.doi.org/10.1063/1.4903831
62.
62. K. R. Farmer, C. T. Rogers, and R. A. Buhrman, Phys. Rev. Lett. 58, 2255 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.2255
63.
63. J. Ross, Thermodynamics and Fluctuations Far from Equilibrium ( Springer Verlag, Berlin, 2008).
64.
64. P. R. F. Rocha, A. Kiazadeh, D. M. De Leeuw, S. C. J. Meskers, F. Verbakel, D. M. Taylor, and H. L. Gomes, J. Appl. Phys. 113, 134504 (2013).
http://dx.doi.org/10.1063/1.4799093
http://aip.metastore.ingenta.com/content/aip/journal/jap/118/20/10.1063/1.4936349
Loading
/content/aip/journal/jap/118/20/10.1063/1.4936349
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/118/20/10.1063/1.4936349
2015-11-24
2016-12-06

Abstract

Diodes incorporating a bilayer of an organic semiconductor and a wide bandgap metal oxide can show unipolar, non-volatile memory behavior after electroforming. The prolonged bias voltage stress induces defects in the metal oxide with an areal density exceeding 1017 m−2. We explain the electrical bistability by the coexistence of two thermodynamically stable phases at the interface between an organic semiconductor and metal oxide. One phase contains mainly ionized defects and has a low work function, while the other phase has mainly neutral defects and a high work function. In the diodes, domains of the phase with a low work function constitute current filaments. The phase composition and critical temperature are derived from a 2D Ising model as a function of chemical potential. The model predicts filamentary conduction exhibiting a negative differential resistance and nonvolatile memory behavior. The model is expected to be generally applicable to any bilayer system that shows unipolar resistive switching.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/118/20/1.4936349.html;jsessionid=eqQ0ElwwZFHHY4DIr_UA76tM.x-aip-live-02?itemId=/content/aip/journal/jap/118/20/10.1063/1.4936349&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/118/20/10.1063/1.4936349&pageURL=http://scitation.aip.org/content/aip/journal/jap/118/20/10.1063/1.4936349'
Right1,Right2,Right3,