Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. Iijima, “ Helical microtubules of graphitic carbon,” Nature 354, 5658 (1991).
2. N. Hamada, S. Sawada, and A. Oshiyama, “ New one-dimensional conductors: Graphitic microtubules,” Phys. Rev. Lett. 68, 15791581 (1992).
3. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “ Electronic structure of chiral graphene tubules,” Appl. Phys. Lett. 60, 22042206 (1992).
4. K. Tanaka, K. Okahara, M. Okada, and T. Yamabe, “ Electronic properties of bucky-tube model,” Chem. Phys. Lett. 191(5), 469472 (1992).
5. J.-Y. Kim, M. Kim, H. M. Kim, J. Joo, and J.-H. Choi, “ Electrical and optical studies of organic light emitting devices using SWCNTs-polymer nanocomposites,” Opt. Mater. 21, 147151 (2002).
6. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, “ Electrical conductivity of individual carbon nanotubes,” Nature 382, 5456 (1996).
7. J. W. G. Wildoerm, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, “ Electronic structure of atomically resolved carbon nanotubes,” Nature 391, 5962 (1998).
8. T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, “ Atomic structure and electronic properties of single-walled carbon nanotubes,” Nature 391, 6264 (1998).
9. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, “ Exceptionally high Young's modulus observed for individual carbon nanotubes,” Nature 381, 678680 (1996).
10. Y. Saito, S. Uemura, and K. Hamaguchi, “ Cathode ray tube lighting elements with carbon nanotube field emitters,” Jpn. J. Appl. Phys., Part 2 37, L346348 (1998).
11. H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, “ Nanotubes as nanoprobes in scanning probe microscopy,” Nature 384, 147150 (1996).
12. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Haben, “ Storage of hydrogen in single-walled carbon nanotubes,” Nature 386, 377379 (1997).
13. C. Niu, E. K. Sichel, R. Hoch, D. Moy, and H. Tennent, “ High power electrochemical capacitors based on carbon nanotube electrodes,” Appl. Phys. Lett. 70, 14801482 (1997).
14. K. Tohji, T. Goto, H. Takahashi et al., “ Purifying single-walled nanotubes,” Nature 383(6602), 679 (1996).
15. S. Iwata, Y. Sato, K. Nakai, S. Ogura, T. Okano, M. Namura, A. Kasuya, K. Tohji, and K. Fukutani, “ Novel method to evaluate the carbon network of single-walled carbon nanotubes by hydrogen physisorption,” J. Phys. Chem. C 111, 1493714941 (2007).
16. N. Shimoi, L. E. Adriana, Y. Tanaka et al., “ Properties of a field emission lighting plane employing highly crystalline single-walled carbon nanotubes fabricated by simple processes,” Carbon 65, 228235 (2013).
17. S. B. Garrido, N. Shimoi, D. Abe, T. Hojo, Y. Tanaka, and K. Tohji, “ Plannar light source using a phosphor screen with single-walled carbon nanotubes as field emitters,” Rev. Sci. Instrum. 85, 104704 (2014).
18. N. Shimoi, T. Hojo, L. E. Adriana et al., “ Properties of a field emission lighting device employing high crystallized single-wall carbon nanotubes,” SID Symp. Dig. Tech. Pap. 44(1), 737740 (2013).
19. M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, “ Raman spectroscopy of carbon nanotubes,” Phys. Rep. 409, 4799 (2005).
20. B. Wu, D. Geng, and Y. Liu, “ Evaluation of metallic and semiconducting single-walled carbon nanotube characteristics,” Nanoscale 3, 2074 (2011).
21. R. P. Wallace, “ The band theory of graphite,” Phys. Rev. 71, 622634 (1947).
22. K . Sasaki., R . Saito., G . Dresselhaus., M. S . Dresselhaus., H . Farhat., and J . Kong., “ Chirality-dependent frequency shift of radial breathing mode in metallic carbon nanotubes,” Phys. Rev. B 78(23), 235405 (2008).
23. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, “ Electronic structure of double-layer graphene tubules,” J. Appl. Phys. 73, 494500 (1993).
24. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, “ Science of fullerenes and carbon nanotubes: Their properties and applications,” Science of Fullerenes and Carbon Nanotubes ( Academic Press, 1996).
25. C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, “ Physical properties of thin-film field emission cathodes with molybdenum cones,” J. Appl. Phys. 47(12), 52485263 (1976).
26. R. Czerw, S. Webster, D. L. Carroll, S. M. C. Vieira, P. R. Birkett, C. A. Rego, and S. Roth, “ Tunneling microscopy and spectroscopy of multiwalled boron nitride nanotubes,” Appl. Phys. Lett. 83, 16171619 (2003).
27. P. M. Albrecht and J. W. Lyding, “ Ultrhigh-vacuum scanning tunneling microscopy and spectroscopy of single-walled carbon nanotubes on hydrogen-passivated Si(100) surfaces,” Appl. Phys. Lett. 83, 50295031 (2003).
28. J. R. Kirtley, T. N. Theis, J. C. Tsang, and D. J. DiMaria, “ Hot-electron picture of light emission from tunnel junctions,” Phys. Rev. B 27, 46014611 (1983).
29. J. Bardeen, “ Tunneling from a many-particle point of view,” Phys. Rev. Lett. 6, 5759 (1961).
30. J. Watanabe, Y. Uehara, J. Murota, and S. Ushioda, “ Light emission from Si-metal-oxide-semiconductor tunnel junctions,” Jpn. J. Appl. Phys., Part 1 32, 99101 (1993).
31. P. R. Bandaru, “ Electrical properties and applications of carbon nanotube structures,” J. Nanosci. Nanotechnol. 7, 12391267 (2007).
32. C. Petit, G. Salace, and D. Vuillaume, “ Aluminum, oxide, and silicon phonons by inelastic electron tunneling spectroscopy on metal-oxide-semiconductor tunnel junctions: Accurate determination and effect of electrical stress,” J. Appl. Phys. 96, 50425049 (2004).
33. R. H. Fowler and L. Nordheim, “ Electron emission in intense electric fields,” Proc. R. Soc. London, Ser. A 119, 173181 (1928).

Data & Media loading...


Article metrics loading...



Single-walled carbon nanotubes(SWCNTs) synthesized by arc discharge are expected to exhibit good field emission (FE) properties at a low driving voltage. We used a coating containing homogeneously dispersed highly crystalline SWCNTs produced by a high-temperature annealing process to fabricate an FE device by a wet-coating process at a low cost. Using the coating, we succeeded in reducing the power consumption of field emitters for planar lighting devices. SWCNTs synthesized by arc discharge have crystal defects in the carbon network, which are considered to induce inelastic electron tunneling that deteriorates the electrical conductivity of the SWCNTs. In this study, the blocking of the transport of electrons in SWCNTs with crystal defects is simulated using an inelastic electron tunnelingmodel. We succeeded in clarifying the mechanism underlying the electrical conductivity of SWCNTs by controlling their crystallinity. In addition, it was confirmed that field emitters using highly crystalline SWCNTs can lead to new applications operating with low power consumption and new devices that may change our daily lives in the future.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd