Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/118/21/10.1063/1.4936788
1.
1. S. Iijima, “ Helical microtubules of graphitic carbon,” Nature 354, 5658 (1991).
http://dx.doi.org/10.1038/354056a0
2.
2. N. Hamada, S. Sawada, and A. Oshiyama, “ New one-dimensional conductors: Graphitic microtubules,” Phys. Rev. Lett. 68, 15791581 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.1579
3.
3. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “ Electronic structure of chiral graphene tubules,” Appl. Phys. Lett. 60, 22042206 (1992).
http://dx.doi.org/10.1063/1.107080
4.
4. K. Tanaka, K. Okahara, M. Okada, and T. Yamabe, “ Electronic properties of bucky-tube model,” Chem. Phys. Lett. 191(5), 469472 (1992).
http://dx.doi.org/10.1016/0009-2614(92)85410-C
5.
5. J.-Y. Kim, M. Kim, H. M. Kim, J. Joo, and J.-H. Choi, “ Electrical and optical studies of organic light emitting devices using SWCNTs-polymer nanocomposites,” Opt. Mater. 21, 147151 (2002).
http://dx.doi.org/10.1016/S0925-3467(02)00127-1
6.
6. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, “ Electrical conductivity of individual carbon nanotubes,” Nature 382, 5456 (1996).
http://dx.doi.org/10.1038/382054a0
7.
7. J. W. G. Wildoerm, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, “ Electronic structure of atomically resolved carbon nanotubes,” Nature 391, 5962 (1998).
http://dx.doi.org/10.1038/34139
8.
8. T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, “ Atomic structure and electronic properties of single-walled carbon nanotubes,” Nature 391, 6264 (1998).
http://dx.doi.org/10.1038/34145
9.
9. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, “ Exceptionally high Young's modulus observed for individual carbon nanotubes,” Nature 381, 678680 (1996).
http://dx.doi.org/10.1038/381678a0
10.
10. Y. Saito, S. Uemura, and K. Hamaguchi, “ Cathode ray tube lighting elements with carbon nanotube field emitters,” Jpn. J. Appl. Phys., Part 2 37, L346348 (1998).
http://dx.doi.org/10.1143/JJAP.37.L346
11.
11. H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, “ Nanotubes as nanoprobes in scanning probe microscopy,” Nature 384, 147150 (1996).
http://dx.doi.org/10.1038/384147a0
12.
12. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Haben, “ Storage of hydrogen in single-walled carbon nanotubes,” Nature 386, 377379 (1997).
http://dx.doi.org/10.1038/386377a0
13.
13. C. Niu, E. K. Sichel, R. Hoch, D. Moy, and H. Tennent, “ High power electrochemical capacitors based on carbon nanotube electrodes,” Appl. Phys. Lett. 70, 14801482 (1997).
http://dx.doi.org/10.1063/1.118568
14.
14. K. Tohji, T. Goto, H. Takahashi et al., “ Purifying single-walled nanotubes,” Nature 383(6602), 679 (1996).
http://dx.doi.org/10.1038/383679a0
15.
15. S. Iwata, Y. Sato, K. Nakai, S. Ogura, T. Okano, M. Namura, A. Kasuya, K. Tohji, and K. Fukutani, “ Novel method to evaluate the carbon network of single-walled carbon nanotubes by hydrogen physisorption,” J. Phys. Chem. C 111, 1493714941 (2007).
http://dx.doi.org/10.1021/jp076275j
16.
16. N. Shimoi, L. E. Adriana, Y. Tanaka et al., “ Properties of a field emission lighting plane employing highly crystalline single-walled carbon nanotubes fabricated by simple processes,” Carbon 65, 228235 (2013).
http://dx.doi.org/10.1016/j.carbon.2013.08.018
17.
17. S. B. Garrido, N. Shimoi, D. Abe, T. Hojo, Y. Tanaka, and K. Tohji, “ Plannar light source using a phosphor screen with single-walled carbon nanotubes as field emitters,” Rev. Sci. Instrum. 85, 104704 (2014).
http://dx.doi.org/10.1063/1.4895913
18.
18. N. Shimoi, T. Hojo, L. E. Adriana et al., “ Properties of a field emission lighting device employing high crystallized single-wall carbon nanotubes,” SID Symp. Dig. Tech. Pap. 44(1), 737740 (2013).
http://dx.doi.org/10.1002/j.2168-0159.2013.tb06319.x
19.
19. M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, “ Raman spectroscopy of carbon nanotubes,” Phys. Rep. 409, 4799 (2005).
http://dx.doi.org/10.1016/j.physrep.2004.10.006
20.
20. B. Wu, D. Geng, and Y. Liu, “ Evaluation of metallic and semiconducting single-walled carbon nanotube characteristics,” Nanoscale 3, 2074 (2011).
http://dx.doi.org/10.1039/c0nr00958j
21.
21. R. P. Wallace, “ The band theory of graphite,” Phys. Rev. 71, 622634 (1947).
http://dx.doi.org/10.1103/PhysRev.71.622
22.
22. K . Sasaki., R . Saito., G . Dresselhaus., M. S . Dresselhaus., H . Farhat., and J . Kong., “ Chirality-dependent frequency shift of radial breathing mode in metallic carbon nanotubes,” Phys. Rev. B 78(23), 235405 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.235405
23.
23. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, “ Electronic structure of double-layer graphene tubules,” J. Appl. Phys. 73, 494500 (1993).
http://dx.doi.org/10.1063/1.353358
24.
24. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, “ Science of fullerenes and carbon nanotubes: Their properties and applications,” Science of Fullerenes and Carbon Nanotubes ( Academic Press, 1996).
25.
25. C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, “ Physical properties of thin-film field emission cathodes with molybdenum cones,” J. Appl. Phys. 47(12), 52485263 (1976).
http://dx.doi.org/10.1063/1.322600
26.
26. R. Czerw, S. Webster, D. L. Carroll, S. M. C. Vieira, P. R. Birkett, C. A. Rego, and S. Roth, “ Tunneling microscopy and spectroscopy of multiwalled boron nitride nanotubes,” Appl. Phys. Lett. 83, 16171619 (2003).
http://dx.doi.org/10.1063/1.1601308
27.
27. P. M. Albrecht and J. W. Lyding, “ Ultrhigh-vacuum scanning tunneling microscopy and spectroscopy of single-walled carbon nanotubes on hydrogen-passivated Si(100) surfaces,” Appl. Phys. Lett. 83, 50295031 (2003).
http://dx.doi.org/10.1063/1.1633014
28.
28. J. R. Kirtley, T. N. Theis, J. C. Tsang, and D. J. DiMaria, “ Hot-electron picture of light emission from tunnel junctions,” Phys. Rev. B 27, 46014611 (1983).
http://dx.doi.org/10.1103/PhysRevB.27.4601
29.
29. J. Bardeen, “ Tunneling from a many-particle point of view,” Phys. Rev. Lett. 6, 5759 (1961).
http://dx.doi.org/10.1103/PhysRevLett.6.57
30.
30. J. Watanabe, Y. Uehara, J. Murota, and S. Ushioda, “ Light emission from Si-metal-oxide-semiconductor tunnel junctions,” Jpn. J. Appl. Phys., Part 1 32, 99101 (1993).
http://dx.doi.org/10.1143/JJAP.32.99
31.
31. P. R. Bandaru, “ Electrical properties and applications of carbon nanotube structures,” J. Nanosci. Nanotechnol. 7, 12391267 (2007).
http://dx.doi.org/10.1166/jnn.2007.307
32.
32. C. Petit, G. Salace, and D. Vuillaume, “ Aluminum, oxide, and silicon phonons by inelastic electron tunneling spectroscopy on metal-oxide-semiconductor tunnel junctions: Accurate determination and effect of electrical stress,” J. Appl. Phys. 96, 50425049 (2004).
http://dx.doi.org/10.1063/1.1775299
33.
33. R. H. Fowler and L. Nordheim, “ Electron emission in intense electric fields,” Proc. R. Soc. London, Ser. A 119, 173181 (1928).
http://dx.doi.org/10.1098/rspa.1928.0091
http://aip.metastore.ingenta.com/content/aip/journal/jap/118/21/10.1063/1.4936788
Loading
/content/aip/journal/jap/118/21/10.1063/1.4936788
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/118/21/10.1063/1.4936788
2015-12-02
2016-09-25

Abstract

Single-walled carbon nanotubes(SWCNTs) synthesized by arc discharge are expected to exhibit good field emission (FE) properties at a low driving voltage. We used a coating containing homogeneously dispersed highly crystalline SWCNTs produced by a high-temperature annealing process to fabricate an FE device by a wet-coating process at a low cost. Using the coating, we succeeded in reducing the power consumption of field emitters for planar lighting devices. SWCNTs synthesized by arc discharge have crystal defects in the carbon network, which are considered to induce inelastic electron tunneling that deteriorates the electrical conductivity of the SWCNTs. In this study, the blocking of the transport of electrons in SWCNTs with crystal defects is simulated using an inelastic electron tunnelingmodel. We succeeded in clarifying the mechanism underlying the electrical conductivity of SWCNTs by controlling their crystallinity. In addition, it was confirmed that field emitters using highly crystalline SWCNTs can lead to new applications operating with low power consumption and new devices that may change our daily lives in the future.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/118/21/1.4936788.html;jsessionid=5mmIgY2JlQtddJiavsIgUhzK.x-aip-live-06?itemId=/content/aip/journal/jap/118/21/10.1063/1.4936788&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/118/21/10.1063/1.4936788&pageURL=http://scitation.aip.org/content/aip/journal/jap/118/21/10.1063/1.4936788'
Right1,Right2,Right3,