Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/118/21/10.1063/1.4936789
1.
1. Y. A. Izyumov, Y. N. Proshin, and M. G. Khusainov, Phys.-Usp. 45, 109 (2002).
http://dx.doi.org/10.1070/PU2002v045n02ABEH001025
2.
2. A. I. Buzdin, Rev. Mod. Phys. 77, 935976 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.935
3.
3.Series springer tracts in modern physics,” in Magnetic Heterostructures. Advances and Perspectives in Spinstructures and Spintransport, edited by H. Zabel and S. D. Bader ( Springer, 2007), Vol. 227, p. 252.
4.
4. V. Zdravkov, A. Sidorenko, G. Obermeier, S. Gsell, M. Schreck, C. Müller, S. Horn, R. Tidecks, and L. R. Tagirov, Phys. Rev. Lett. 97, 057004 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.057004
5.
5. V. I. Zdravkov, J. Kehrle, G. Obermeier, S. Gsell, M. Schreck, C. Müller, H.-A. Krug von Nidda, J. Lindner, J. Moosburger-Will, E. Nold, R. Morari, V. V. Ryazanov, A. S. Sidorenko, S. Horn, R. Tidecks, and L. R. Tagirov, Phys. Rev. B 82, 054517 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.054517
6.
6. Y. V. Fominov, N. M. Chtchelkatchev, and A. A. Golubov, Phys. Rev. B 66, 014507 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.014507
7.
7. M. Fauré, A. I. Buzdin, A. A. Golubov, and M. Y. Kupriyanov, Phys. Rev. B 73, 064505 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.064505
8.
8. T. Mühge, N. N. Garif'yanov, Y. V. Goryunov, G. G. Khaliullin, L. R. Tagirov, K. Westerholt, I. A. Garifullin, and H. Zabel, Phys. Rev. Lett. 77, 18571860 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.1857
9.
9. T. Mühge, N. Garif'yanov, Y. Goryunov, K. Theis-Bröhl, K. Westerholt, I. Garifullin, and H. Zabel, Physica C 296, 325336 (1998).
http://dx.doi.org/10.1016/S0921-4534(97)01819-4
10.
10. T. Mühge, K. Theis-Bröhl, K. Westerholt, H. Zabel, N. N. Garif'yanov, Y. V. Goryunov, I. A. Garifullin, and G. G. Khaliullin, Phys. Rev. B 57, 50715074 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.5071
11.
11. L. Lazar, K. Westerholt, H. Zabel, L. R. Tagirov, Y. V. Goryunov, N. N. Garif'yanov, and I. A. Garifullin, Phys. Rev. B 61, 37113722 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.3711
12.
12. I. A. Garifullin, D. A. Tikhonov, N. N. Garifíyanov, M. Z. Fattakhov, K. Theis-Bröhl, K. Westerholt, and H. Zabel, Appl. Magn. Reson. 22, 439 (2002).
http://dx.doi.org/10.1007/BF03166124
13.
13. A. S. Sidorenko, V. Zdravkov, A. Prepelitsa, C. Helbig, Y. Luo, S. Gsell, M. Schreck, S. Klimm, S. Horn, R. Tagirov, and R. Tidecks, Ann. Phys. (Leipzig) 12, 37 (2003).
http://dx.doi.org/10.1002/andp.200310005
14.
14. C. Cirillo, S. L. Prischepa, M. Salvato, C. Attanasio, M. Hesselberth, and J. Aarts, Phys. Rev. B 72, 144511 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.144511
15.
15. A. Tesauro, A. Aurigemma, C. Cirillo, S. Prischepa, M. Salvato, and C. Attanasio, Supercond. Sci. Technol. 18, 1 (2005).
http://dx.doi.org/10.1088/0953-2048/18/1/001
16.
16. A. M. Nikitin, M. M. Borisov, E. K. Mukhamedzhanov, M. V. Kovalchuk, S. Sajti, F. Tancziko, L. Deak, L. Bottyan, Y. N. Khaydukov, and V. L. Aksenov, Cryst. Rep. 56, 858 (2011).
http://dx.doi.org/10.1134/S106377451105021X
17.
17. A. Vecchione, R. Fittipaldi, C. Cirillo, M. Hesselberth, J. Aarts, S. Prischepa, V. Kushnir, M. Kupriyanov, and C. Attanasio, Surf. Sci. 605, 1791 (2011).
http://dx.doi.org/10.1016/j.susc.2011.06.013
18.
18. S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, Phys. Rev. B 38, 22972311 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.2297
19.
19. L. Deák, L. Bottyán, D. L. Nagy, H. Spiering, Y. N. Khaidukov, and Y. Yoda, Phys. Rev. B 76, 224420 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.224420
20.
20. Z. H. Ming, A. Krol, Y. L. Soo, Y. H. Kao, J. S. Park, and K. L. Wang, Phys. Rev. B 47, 1637316381 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.16373
21.
21. V. Holý and T. Baumbach, Phys. Rev. B 49, 1066810676 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.10668
22.
22. Y. Khaydukov, R. Morari, L. Mustafa, J.-H. Kim, T. Keller, S. Belevski, A. Csik, L. Tagirov, G. Logvenov, A. Sidorenko, and B. Keimer, J. Supercond. Novel Magn. 28, 1143 (2015).
http://dx.doi.org/10.1007/s10948-014-2850-3
23.
23.See http://jp-minerals.org/vesta/en/ for description and distributive.
24.
24. T. Nakanishi, M. Takeyama, A. Noya, and K. Sasaki, J. Appl. Phys. 77, 948 (1995).
http://dx.doi.org/10.1063/1.359584
25.
25. M. Zhang, W. Yu, W. H. Wang, and W. K. Wang, J. Appl. Phys. 80, 1422 (1996).
http://dx.doi.org/10.1063/1.362940
26.
26. A. Golubov and M. Kupriyanov, J. Low Temp. Phys. 70, 83 (1988).
http://dx.doi.org/10.1007/BF00683247
27.
27. M. Strongin, Physica 55, 155 (1971).
http://dx.doi.org/10.1016/0031-8914(71)90249-7
28.
28. A. A. Teplov, M. N. Mikheeva, V. M. Golyanov, and A. N. Gusev, Sov. Phys. JETP 44, 587 (1976).
http://aip.metastore.ingenta.com/content/aip/journal/jap/118/21/10.1063/1.4936789
Loading
/content/aip/journal/jap/118/21/10.1063/1.4936789
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/118/21/10.1063/1.4936789
2015-12-04
2016-12-11

Abstract

We report an investigation of the structural and electronic properties of hybrid superconductor/ferromagnet (S/F) bilayers of composition Nb/CuNi prepared by magnetron sputtering. X-ray and neutron reflectometry show that both the overall interfacial roughness and vertical correlations of the roughness of different interfaces are lower for heterostructures deposited on AlO() substrates than for those deposited on Si(111). Mutual inductance experiments were then used to study the influence of the interfacial roughness on the superconducting transition temperature, . These measurements revealed a ∼4% higher in heterostructures deposited on AlO, compared to those on Si. We attribute this effect to a higher mean-free path of electrons in the S layer, caused by a suppression of diffusive scattering at the interfaces. However, the dependence of the on the thickness of the ferromagnetic layer is not significantly different in the two systems, indicating a weak influence of the interfacial roughness on the transparency for Cooper pairs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/118/21/1.4936789.html;jsessionid=E9d2yOwLL0m8JGCLEe4tDp9Y.x-aip-live-02?itemId=/content/aip/journal/jap/118/21/10.1063/1.4936789&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/118/21/10.1063/1.4936789&pageURL=http://scitation.aip.org/content/aip/journal/jap/118/21/10.1063/1.4936789'
Right1,Right2,Right3,