Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Y. A. Izyumov, Y. N. Proshin, and M. G. Khusainov, Phys.-Usp. 45, 109 (2002).
2. A. I. Buzdin, Rev. Mod. Phys. 77, 935976 (2005).
3.Series springer tracts in modern physics,” in Magnetic Heterostructures. Advances and Perspectives in Spinstructures and Spintransport, edited by H. Zabel and S. D. Bader ( Springer, 2007), Vol. 227, p. 252.
4. V. Zdravkov, A. Sidorenko, G. Obermeier, S. Gsell, M. Schreck, C. Müller, S. Horn, R. Tidecks, and L. R. Tagirov, Phys. Rev. Lett. 97, 057004 (2006).
5. V. I. Zdravkov, J. Kehrle, G. Obermeier, S. Gsell, M. Schreck, C. Müller, H.-A. Krug von Nidda, J. Lindner, J. Moosburger-Will, E. Nold, R. Morari, V. V. Ryazanov, A. S. Sidorenko, S. Horn, R. Tidecks, and L. R. Tagirov, Phys. Rev. B 82, 054517 (2010).
6. Y. V. Fominov, N. M. Chtchelkatchev, and A. A. Golubov, Phys. Rev. B 66, 014507 (2002).
7. M. Fauré, A. I. Buzdin, A. A. Golubov, and M. Y. Kupriyanov, Phys. Rev. B 73, 064505 (2006).
8. T. Mühge, N. N. Garif'yanov, Y. V. Goryunov, G. G. Khaliullin, L. R. Tagirov, K. Westerholt, I. A. Garifullin, and H. Zabel, Phys. Rev. Lett. 77, 18571860 (1996).
9. T. Mühge, N. Garif'yanov, Y. Goryunov, K. Theis-Bröhl, K. Westerholt, I. Garifullin, and H. Zabel, Physica C 296, 325336 (1998).
10. T. Mühge, K. Theis-Bröhl, K. Westerholt, H. Zabel, N. N. Garif'yanov, Y. V. Goryunov, I. A. Garifullin, and G. G. Khaliullin, Phys. Rev. B 57, 50715074 (1998).
11. L. Lazar, K. Westerholt, H. Zabel, L. R. Tagirov, Y. V. Goryunov, N. N. Garif'yanov, and I. A. Garifullin, Phys. Rev. B 61, 37113722 (2000).
12. I. A. Garifullin, D. A. Tikhonov, N. N. Garifíyanov, M. Z. Fattakhov, K. Theis-Bröhl, K. Westerholt, and H. Zabel, Appl. Magn. Reson. 22, 439 (2002).
13. A. S. Sidorenko, V. Zdravkov, A. Prepelitsa, C. Helbig, Y. Luo, S. Gsell, M. Schreck, S. Klimm, S. Horn, R. Tagirov, and R. Tidecks, Ann. Phys. (Leipzig) 12, 37 (2003).
14. C. Cirillo, S. L. Prischepa, M. Salvato, C. Attanasio, M. Hesselberth, and J. Aarts, Phys. Rev. B 72, 144511 (2005).
15. A. Tesauro, A. Aurigemma, C. Cirillo, S. Prischepa, M. Salvato, and C. Attanasio, Supercond. Sci. Technol. 18, 1 (2005).
16. A. M. Nikitin, M. M. Borisov, E. K. Mukhamedzhanov, M. V. Kovalchuk, S. Sajti, F. Tancziko, L. Deak, L. Bottyan, Y. N. Khaydukov, and V. L. Aksenov, Cryst. Rep. 56, 858 (2011).
17. A. Vecchione, R. Fittipaldi, C. Cirillo, M. Hesselberth, J. Aarts, S. Prischepa, V. Kushnir, M. Kupriyanov, and C. Attanasio, Surf. Sci. 605, 1791 (2011).
18. S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, Phys. Rev. B 38, 22972311 (1988).
19. L. Deák, L. Bottyán, D. L. Nagy, H. Spiering, Y. N. Khaidukov, and Y. Yoda, Phys. Rev. B 76, 224420 (2007).
20. Z. H. Ming, A. Krol, Y. L. Soo, Y. H. Kao, J. S. Park, and K. L. Wang, Phys. Rev. B 47, 1637316381 (1993).
21. V. Holý and T. Baumbach, Phys. Rev. B 49, 1066810676 (1994).
22. Y. Khaydukov, R. Morari, L. Mustafa, J.-H. Kim, T. Keller, S. Belevski, A. Csik, L. Tagirov, G. Logvenov, A. Sidorenko, and B. Keimer, J. Supercond. Novel Magn. 28, 1143 (2015).
23.See for description and distributive.
24. T. Nakanishi, M. Takeyama, A. Noya, and K. Sasaki, J. Appl. Phys. 77, 948 (1995).
25. M. Zhang, W. Yu, W. H. Wang, and W. K. Wang, J. Appl. Phys. 80, 1422 (1996).
26. A. Golubov and M. Kupriyanov, J. Low Temp. Phys. 70, 83 (1988).
27. M. Strongin, Physica 55, 155 (1971).
28. A. A. Teplov, M. N. Mikheeva, V. M. Golyanov, and A. N. Gusev, Sov. Phys. JETP 44, 587 (1976).

Data & Media loading...


Article metrics loading...



We report an investigation of the structural and electronic properties of hybrid superconductor/ferromagnet (S/F) bilayers of composition Nb/CuNi prepared by magnetron sputtering. X-ray and neutron reflectometry show that both the overall interfacial roughness and vertical correlations of the roughness of different interfaces are lower for heterostructures deposited on AlO() substrates than for those deposited on Si(111). Mutual inductance experiments were then used to study the influence of the interfacial roughness on the superconducting transition temperature, . These measurements revealed a ∼4% higher in heterostructures deposited on AlO, compared to those on Si. We attribute this effect to a higher mean-free path of electrons in the S layer, caused by a suppression of diffusive scattering at the interfaces. However, the dependence of the on the thickness of the ferromagnetic layer is not significantly different in the two systems, indicating a weak influence of the interfacial roughness on the transparency for Cooper pairs.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd