Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/118/21/10.1063/1.4936852
1.
1. R. J. Falster and W. Bergholz, “ The gettering of transition metals by oxygen-related defects in silicon,” J. Electrochem. Soc. 137, 1548 (1990).
http://dx.doi.org/10.1149/1.2086709
2.
2. D. Gilles, E. R. Weber, and S. Hahn, “ Mechanism of internal gettering of interstitial impurities in Czochralski-grown silicon,” Phys. Rev. Lett. 64, 196 (1990).
http://dx.doi.org/10.1103/PhysRevLett.64.196
3.
3. W. Bergholz, M. J. Binns, G. R. Booker, J. C. Hutchison, S. H. Kinder, S. Messoloras, R. C. Newman, R. J. Stewart, and J. G. Wilkes, “ A study of oxygen precipitation in silicon using high-resolution transmission electron microscopy, small-angle neutron scattering and infrared absorption,” Philos. Mag. B 59, 499 (1989).
http://dx.doi.org/10.1080/13642818908211173
4.
4. R. Falster, V. V. Voronkov, V. Y. Resnik, and M. G. Milvidskii, “ Thresholds for effective internal gettering in silicon wafers,” in Proceedings of the Electrochemical Society, High Purity Silicon VIII (2004), Vol. 200405, p. 188.
5.
5. V. V. Voronkov and R. Falster, “ Grown-in microdefects, residual vacancies and oxygen precipitation bands in Czochralski silicon,” J. Cryst. Growth 204, 462 (1999).
http://dx.doi.org/10.1016/S0022-0248(99)00202-X
6.
6. J. Haunschild, I. E. Reis, J. Geilker, and S. Rein, “ Detecting efficiency-limiting defects in Czochralski-grown silicon wafers in solar cell production using photoluminescence imaging,” Phys. Status Solidi RRL 5, 199 (2011).
http://dx.doi.org/10.1002/pssr.201105183
7.
7. K. Youssef, M. Shi, C. Radue, E. Good, and G. Rozgonyi, “ Effect of oxygen and associated residual stresses on the mechanical properties of high growth rate Czochralski silicon,” J. Appl. Phys. 113, 133502 (2013).
http://dx.doi.org/10.1063/1.4798599
8.
8. I. Kolevatov, V. Osinniy, M. Herms, A. Loshachenko, I. Shlyakhov, V. Kveder, and O. Vyvenko, “ Oxygen-related defects: minority carrier lifetime killers in n-type Czochralski silicon wafers for solar cell application,” Phys. Status Solidi C 12, 1108 (2015).
http://dx.doi.org/10.1002/pssc.201400293
9.
9. L. Chen, X. Yu, P. Chen, P. Wang, X. Gu, J. Lu, and D. Yang, “ Effect of oxygen precipitation on the performance of Czochralski silicon solar cells,” Sol. Energy Mater. Sol. Cells 95, 3148 (2011).
http://dx.doi.org/10.1016/j.solmat.2011.06.044
10.
10. D. Song, J. Xiong, Z. Hu, G. Li, H. Wang, H. An, B. Yu, B. Grenko, K. Borden, K. Sauer, T. Roessler, J. Cui, H. Wang, J. Bultman, A. H. G. Vlooswijk, and P. R. Venema, paper presented at the 2012 38th IEEE Photovoltaic Specialists Conference (PVSC), Austin, TX (2012).
11.
11. F. Schindler, B. Michl, A. Kleiber, H. Steinkemper, J. Schön, W. Kwapil, P. Krenckel, S. Riepe, W. Warta, and M. C. Schubert, “ Potential gain in multicrystalline silicon solar cell efficiency by n-type doping,” IEEE J. Photovoltaics 5, 499 (2015).
http://dx.doi.org/10.1109/JPHOTOV.2014.2377554
12.
12. D. Macdonald and L. J. Geerligs, “ Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon,” Appl. Phys. Lett. 85, 4061 (2004).
http://dx.doi.org/10.1063/1.1812833
13.
13. F. E. Rougieux, B. Lim, J. Schmidt, M. Forster, D. Macdonald, and A. Cuevas, “ Influence of net doping, excess carrier density and annealing on the boron oxygen related defect density in compensated n-type silicon,” J. Appl. Phys. 110, 063708 (2011).
http://dx.doi.org/10.1063/1.3633492
14.
14. G. Coletti, P. Manshandena, S. Bernardini, P. C. P. Bronsveld, A. Gutjahra, Z. Hub, and G. Li, “ Removing the effect of striations in n-type silicon solar cells,” Sol. Energy Mater. Sol. Cells 130, 647 (2014).
http://dx.doi.org/10.1016/j.solmat.2014.06.016
15.
15. K. H. Yang, H. F. Kappert, and G. H. Schwuttke, “ Minority carrier lifetime in annealed silicon crystals containing oxygen,” Phys. Status Solidi A 50, 221 (1978).
http://dx.doi.org/10.1002/pssa.2210500126
16.
16. M. Miyagi, K. Wada, J. Osaka, and N. Inoue, “ Effect of oxide precipitates on minority-carrier lifetime in Czochralski-grown silicon,” Appl. Phys. Lett. 40, 719 (1982).
http://dx.doi.org/10.1063/1.93203
17.
17. S. S. Chan, C. J. Varker, J. D. Whitfield, and R. W. Carpenter, “ Deep levels associated with oxygen precipitation in Cz silicon and correlation with minority carrier lifetimes,” Mater. Res. Soc. Symp. Proc. 46, 281 (1985).
http://dx.doi.org/10.1557/PROC-46-281
18.
18. J. M. Hwang and D. K. Schroder, “ Recombination properties of oxygen-precipitated silicon,” J. Appl. Phys. 59, 2476 (1986).
http://dx.doi.org/10.1063/1.336993
19.
19. J. Vanhellemont, E. Simoen, A. Kaniava, M. Libezny, and C. Claeys, “ Impact of oxygen related extended defects on silicon diode characteristics,” J. Appl. Phys. 77, 5669 (1995).
http://dx.doi.org/10.1063/1.359209
20.
20. F. G. Kirscht, Y. Furukawa, W. Seifert, K. Schmalz, A. Buczkowski, S. B. Kim, H. Abe, H. Koya, and J. Bailey, “ Electrical characteristics of oxygen precipitation related defects in Czochralski silicon wafers,” Mater. Sci. Eng. B 36, 230 (1996).
http://dx.doi.org/10.1016/0921-5107(95)01289-3
21.
21. J. D. Murphy, K. Bothe, M. Olmo, V. V. Voronkov, and R. J. Falster, “ The effect of oxide precipitates on minority carrier lifetime in p-type silicon,” J. Appl. Phys. 110, 053713 (2011).
http://dx.doi.org/10.1063/1.3632067
22.
22. J. D. Murphy, K. Bothe, R. Krain, V. V. Voronkov, and R. J. Falster, “ Parameterisation of injection-dependent lifetime measurements in semiconductors in terms of Shockley-Read-Hall statistics: an application to oxide precipitates in silicon,” J. Appl. Phys. 111, 113709 (2012).
http://dx.doi.org/10.1063/1.4725475
23.
23. J. D. Murphy, K. Bothe, V. V. Voronkov, and R. J. Falster, “ On the mechanism of recombination at oxide precipitates in silicon,” Appl. Phys. Lett. 102, 042105 (2013).
http://dx.doi.org/10.1063/1.4789858
24.
24. J. D. Murphy, R. E. McGuire, K. Bothe, V. V. Voronkov, and R. J. Falster, “ Minority carrier lifetime in silicon photovoltaics: The effect of oxygen precipitation,” Sol. Energy Mater. Sol. Cells 120, 402 (2014).
http://dx.doi.org/10.1016/j.solmat.2013.06.018
25.
25. M. Koizuka and H. Yamada-Kaneta, “ Electron spin resonance centers associated with oxygen precipitates in Czochralski silicon crystals,” J. Appl. Phys. 88, 1784 (2000).
http://dx.doi.org/10.1063/1.1305325
26.
26. V. Lang, J. D. Murphy, R. J. Falster, and J. J. L. Morton, “ Spin-dependent recombination in Czochralski silicon containing oxide precipitates,” J. Appl. Phys. 111, 013710 (2012).
http://dx.doi.org/10.1063/1.3675449
27.
27. W. Seifert, M. Kittler, M. Seibt, and A. Buczkowski, “ Contrastive recombination behaviour of metal silicide and oxygen precipitates in n-type silicon: Attempt at an explanation,” Solid State Phenom. 47–48, 365 (1996).
http://dx.doi.org/10.4028/www.scientific.net/SSP.47-48.365
28.
28. T. Mchedlidze and K. Matsumoto, “ Electrically detected magnetic resonance signal from iron contaminated Czochralski silicon crystal,” J. Appl. Phys. 83, 4042 (1998).
http://dx.doi.org/10.1063/1.367160
29.
29. J. D. Murphy, R. E. McGuire, K. Bothe, V. V. Voronkov, and R. J. Falster, “ Competitive gettering of iron in silicon photovoltaics: Oxide precipitates versus phosphorus diffusion,” J. Appl. Phys. 116, 053514 (2014).
http://dx.doi.org/10.1063/1.4892015
30.
30. K. Bothe, R. J. Falster, and J. D. Murphy, “ Room temperature sub-bandgap photoluminescence from silicon containing oxide precipitates,” Appl. Phys. Lett. 101, 032107 (2012).
http://dx.doi.org/10.1063/1.4737175
31.
31. R. A. Sinton and A. Cuevas, “ Contactless determination of current–voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data,” Appl. Phys. Lett. 69, 2510 (1996).
http://dx.doi.org/10.1063/1.117723
32.
32. A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “ Improved quantitative description of Auger recombination in crystalline silicon,” Phys. Rev. B 86, 165202 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.165202
33.
33. K. F. Kelton, R. Falster, D. Gambaro, M. Olmo, M. Cornara, and P. F. Wei, “ Oxygen precipitation in silicon: Experimental studies and theoretical investigations within the classical theory of nucleation,” J. Appl. Phys. 85, 8097 (1999).
http://dx.doi.org/10.1063/1.370648
34.
34. F. S. Ham, “ Theory of diffusion-limited precipitation,” J. Phys. Chem. Solids 6, 335 (1958).
http://dx.doi.org/10.1016/0022-3697(58)90053-2
35.
35. T. Y. Tan, L. L. Wu, and W. K. Tice, “ Nucleation of stacking faults at oxide precipitate-dislocation complexes in silicon,” Appl. Phys. Lett. 29, 765 (1976).
http://dx.doi.org/10.1063/1.88941
36.
36. S. Senkader, J. Esfandyari, and G. Hobler, “ A model for oxygen precipitation in silicon including bulk stacking fault growth,” J. Appl. Phys. 78, 6469 (1995).
http://dx.doi.org/10.1063/1.360532
37.
37. M. J. Kerr and A. Cuevas, “ Recombination at the interface between silicon and stoichiometric plasma silicon nitride,” Semicond. Sci. Technol. 17, 166 (2002).
http://dx.doi.org/10.1088/0268-1242/17/2/314
38.
38. D. R. Wight, I. D. Blenkinsop, W. Harding, and B. Hamilton, “ Diffusion-limited lifetime in semiconductors,” Phys. Rev. B 23, 5495 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.5495
39.
39. A. Ourmazd and G. R. Booker, “ The electrical recombination efficiency of individual edge dislocations and stacking fault defects in n-type silicon,” Phys. Status Solidi A 55, 771 (1979).
http://dx.doi.org/10.1002/pssa.2210550249
40.
40. K. Wada, N. Inoue, and K. Kohra, “ Diffusion-limited growth of oxide precipitates in Czochralski silicon,” J. Cryst. Growth 49, 749 (1980).
http://dx.doi.org/10.1016/0022-0248(80)90304-8
41.
41. G. Hahn, M. Käs, and B. Herzog, “ Hydrogenation in crystalline Silicon Materials for photovoltaic Application,” Solid State Phenom. 156–158, 343 (2009).
http://dx.doi.org/10.4028/www.scientific.net/SSP.156-158.343
42.
42. E. Cartier, J. H. Stathis, and D. A. Buchanan, “ Passivation and depassivation of silicon dangling bonds at the Si/SiO2 interface by atomic hydrogen,” Appl. Phys. Lett. 63, 1510 (1993).
http://dx.doi.org/10.1063/1.110758
43.
43. R. C. Newman, M. J. Binns, W. P. Brown, F. M. Livingston, S. Messoloras, R. J. Stewart, and J. G. Wilkes, “ Precipitation of oxygen in silicon: kinetics, solubility, diffusivity and particle size,” Physica B 116, 264 (1983).
http://dx.doi.org/10.1016/0378-4363(83)90257-7
44.
44. H. C. Sio, S. P. Phang, T. Trupke, and D. Macdonald, “ Impact of phosphorous gettering and hydrogenation on the surface recombination velocity of grain boundaries in p-type multicrystalline silicon,” IEEE J. Photovoltaics 5, 1357 (2015).
http://dx.doi.org/10.1109/JPHOTOV.2015.2455341
45.
45. W. Shockley and W. T. Read, “ Statistics of the recombinations of holes and electrons,” Phys. Rev. 87, 835 (1952).
http://dx.doi.org/10.1103/PhysRev.87.835
46.
46. R. N. Hall, “ Electron-hole recombination in germanium,” Phys. Rev. 87, 387 (1952).
http://dx.doi.org/10.1103/PhysRev.87.387
http://aip.metastore.ingenta.com/content/aip/journal/jap/118/21/10.1063/1.4936852
Loading
/content/aip/journal/jap/118/21/10.1063/1.4936852
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/118/21/10.1063/1.4936852
2015-12-07
2016-12-07

Abstract

Supersaturated levels of interstitial oxygen in Czochralski silicon can lead to the formation of oxide precipitates. Although beneficial from an internal gettering perspective, oxygen-related extended defects give rise to recombination which reduces minority carrier lifetime. The highest efficiency silicon solar cells are made from -type substrates in which oxide precipitates can have a detrimental impact on cell efficiency. In order to quantify and to understand the mechanism of recombination in such materials, we correlate injection level-dependent minority carrier lifetime data measured with silicon nitride surface passivation with interstitial oxygen loss and precipitate concentration measurements in samples processed under substantially different conditions. We account for surface recombination, doping level, and precipitate morphology to present a generalised parameterisation of lifetime. The lifetime data are analysed in terms of recombination activity which is dependent on precipitate density or on the surface area of different morphologies of precipitates. Correlation of the lifetime data with interstitial oxygen loss data shows that the recombination activity is likely to be dependent on the precipitate surface area. We generalise our findings to estimate the impact of oxide precipitates with a given surface area on lifetime in both -type and -type silicon.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/118/21/1.4936852.html;jsessionid=DmEwdlGS5Xfxh_aaLrboVbQO.x-aip-live-06?itemId=/content/aip/journal/jap/118/21/10.1063/1.4936852&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/118/21/10.1063/1.4936852&pageURL=http://scitation.aip.org/content/aip/journal/jap/118/21/10.1063/1.4936852'
Right1,Right2,Right3,