Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. J. Falster and W. Bergholz, “ The gettering of transition metals by oxygen-related defects in silicon,” J. Electrochem. Soc. 137, 1548 (1990).
2. D. Gilles, E. R. Weber, and S. Hahn, “ Mechanism of internal gettering of interstitial impurities in Czochralski-grown silicon,” Phys. Rev. Lett. 64, 196 (1990).
3. W. Bergholz, M. J. Binns, G. R. Booker, J. C. Hutchison, S. H. Kinder, S. Messoloras, R. C. Newman, R. J. Stewart, and J. G. Wilkes, “ A study of oxygen precipitation in silicon using high-resolution transmission electron microscopy, small-angle neutron scattering and infrared absorption,” Philos. Mag. B 59, 499 (1989).
4. R. Falster, V. V. Voronkov, V. Y. Resnik, and M. G. Milvidskii, “ Thresholds for effective internal gettering in silicon wafers,” in Proceedings of the Electrochemical Society, High Purity Silicon VIII (2004), Vol. 200405, p. 188.
5. V. V. Voronkov and R. Falster, “ Grown-in microdefects, residual vacancies and oxygen precipitation bands in Czochralski silicon,” J. Cryst. Growth 204, 462 (1999).
6. J. Haunschild, I. E. Reis, J. Geilker, and S. Rein, “ Detecting efficiency-limiting defects in Czochralski-grown silicon wafers in solar cell production using photoluminescence imaging,” Phys. Status Solidi RRL 5, 199 (2011).
7. K. Youssef, M. Shi, C. Radue, E. Good, and G. Rozgonyi, “ Effect of oxygen and associated residual stresses on the mechanical properties of high growth rate Czochralski silicon,” J. Appl. Phys. 113, 133502 (2013).
8. I. Kolevatov, V. Osinniy, M. Herms, A. Loshachenko, I. Shlyakhov, V. Kveder, and O. Vyvenko, “ Oxygen-related defects: minority carrier lifetime killers in n-type Czochralski silicon wafers for solar cell application,” Phys. Status Solidi C 12, 1108 (2015).
9. L. Chen, X. Yu, P. Chen, P. Wang, X. Gu, J. Lu, and D. Yang, “ Effect of oxygen precipitation on the performance of Czochralski silicon solar cells,” Sol. Energy Mater. Sol. Cells 95, 3148 (2011).
10. D. Song, J. Xiong, Z. Hu, G. Li, H. Wang, H. An, B. Yu, B. Grenko, K. Borden, K. Sauer, T. Roessler, J. Cui, H. Wang, J. Bultman, A. H. G. Vlooswijk, and P. R. Venema, paper presented at the 2012 38th IEEE Photovoltaic Specialists Conference (PVSC), Austin, TX (2012).
11. F. Schindler, B. Michl, A. Kleiber, H. Steinkemper, J. Schön, W. Kwapil, P. Krenckel, S. Riepe, W. Warta, and M. C. Schubert, “ Potential gain in multicrystalline silicon solar cell efficiency by n-type doping,” IEEE J. Photovoltaics 5, 499 (2015).
12. D. Macdonald and L. J. Geerligs, “ Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon,” Appl. Phys. Lett. 85, 4061 (2004).
13. F. E. Rougieux, B. Lim, J. Schmidt, M. Forster, D. Macdonald, and A. Cuevas, “ Influence of net doping, excess carrier density and annealing on the boron oxygen related defect density in compensated n-type silicon,” J. Appl. Phys. 110, 063708 (2011).
14. G. Coletti, P. Manshandena, S. Bernardini, P. C. P. Bronsveld, A. Gutjahra, Z. Hub, and G. Li, “ Removing the effect of striations in n-type silicon solar cells,” Sol. Energy Mater. Sol. Cells 130, 647 (2014).
15. K. H. Yang, H. F. Kappert, and G. H. Schwuttke, “ Minority carrier lifetime in annealed silicon crystals containing oxygen,” Phys. Status Solidi A 50, 221 (1978).
16. M. Miyagi, K. Wada, J. Osaka, and N. Inoue, “ Effect of oxide precipitates on minority-carrier lifetime in Czochralski-grown silicon,” Appl. Phys. Lett. 40, 719 (1982).
17. S. S. Chan, C. J. Varker, J. D. Whitfield, and R. W. Carpenter, “ Deep levels associated with oxygen precipitation in Cz silicon and correlation with minority carrier lifetimes,” Mater. Res. Soc. Symp. Proc. 46, 281 (1985).
18. J. M. Hwang and D. K. Schroder, “ Recombination properties of oxygen-precipitated silicon,” J. Appl. Phys. 59, 2476 (1986).
19. J. Vanhellemont, E. Simoen, A. Kaniava, M. Libezny, and C. Claeys, “ Impact of oxygen related extended defects on silicon diode characteristics,” J. Appl. Phys. 77, 5669 (1995).
20. F. G. Kirscht, Y. Furukawa, W. Seifert, K. Schmalz, A. Buczkowski, S. B. Kim, H. Abe, H. Koya, and J. Bailey, “ Electrical characteristics of oxygen precipitation related defects in Czochralski silicon wafers,” Mater. Sci. Eng. B 36, 230 (1996).
21. J. D. Murphy, K. Bothe, M. Olmo, V. V. Voronkov, and R. J. Falster, “ The effect of oxide precipitates on minority carrier lifetime in p-type silicon,” J. Appl. Phys. 110, 053713 (2011).
22. J. D. Murphy, K. Bothe, R. Krain, V. V. Voronkov, and R. J. Falster, “ Parameterisation of injection-dependent lifetime measurements in semiconductors in terms of Shockley-Read-Hall statistics: an application to oxide precipitates in silicon,” J. Appl. Phys. 111, 113709 (2012).
23. J. D. Murphy, K. Bothe, V. V. Voronkov, and R. J. Falster, “ On the mechanism of recombination at oxide precipitates in silicon,” Appl. Phys. Lett. 102, 042105 (2013).
24. J. D. Murphy, R. E. McGuire, K. Bothe, V. V. Voronkov, and R. J. Falster, “ Minority carrier lifetime in silicon photovoltaics: The effect of oxygen precipitation,” Sol. Energy Mater. Sol. Cells 120, 402 (2014).
25. M. Koizuka and H. Yamada-Kaneta, “ Electron spin resonance centers associated with oxygen precipitates in Czochralski silicon crystals,” J. Appl. Phys. 88, 1784 (2000).
26. V. Lang, J. D. Murphy, R. J. Falster, and J. J. L. Morton, “ Spin-dependent recombination in Czochralski silicon containing oxide precipitates,” J. Appl. Phys. 111, 013710 (2012).
27. W. Seifert, M. Kittler, M. Seibt, and A. Buczkowski, “ Contrastive recombination behaviour of metal silicide and oxygen precipitates in n-type silicon: Attempt at an explanation,” Solid State Phenom. 47–48, 365 (1996).
28. T. Mchedlidze and K. Matsumoto, “ Electrically detected magnetic resonance signal from iron contaminated Czochralski silicon crystal,” J. Appl. Phys. 83, 4042 (1998).
29. J. D. Murphy, R. E. McGuire, K. Bothe, V. V. Voronkov, and R. J. Falster, “ Competitive gettering of iron in silicon photovoltaics: Oxide precipitates versus phosphorus diffusion,” J. Appl. Phys. 116, 053514 (2014).
30. K. Bothe, R. J. Falster, and J. D. Murphy, “ Room temperature sub-bandgap photoluminescence from silicon containing oxide precipitates,” Appl. Phys. Lett. 101, 032107 (2012).
31. R. A. Sinton and A. Cuevas, “ Contactless determination of current–voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data,” Appl. Phys. Lett. 69, 2510 (1996).
32. A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “ Improved quantitative description of Auger recombination in crystalline silicon,” Phys. Rev. B 86, 165202 (2012).
33. K. F. Kelton, R. Falster, D. Gambaro, M. Olmo, M. Cornara, and P. F. Wei, “ Oxygen precipitation in silicon: Experimental studies and theoretical investigations within the classical theory of nucleation,” J. Appl. Phys. 85, 8097 (1999).
34. F. S. Ham, “ Theory of diffusion-limited precipitation,” J. Phys. Chem. Solids 6, 335 (1958).
35. T. Y. Tan, L. L. Wu, and W. K. Tice, “ Nucleation of stacking faults at oxide precipitate-dislocation complexes in silicon,” Appl. Phys. Lett. 29, 765 (1976).
36. S. Senkader, J. Esfandyari, and G. Hobler, “ A model for oxygen precipitation in silicon including bulk stacking fault growth,” J. Appl. Phys. 78, 6469 (1995).
37. M. J. Kerr and A. Cuevas, “ Recombination at the interface between silicon and stoichiometric plasma silicon nitride,” Semicond. Sci. Technol. 17, 166 (2002).
38. D. R. Wight, I. D. Blenkinsop, W. Harding, and B. Hamilton, “ Diffusion-limited lifetime in semiconductors,” Phys. Rev. B 23, 5495 (1981).
39. A. Ourmazd and G. R. Booker, “ The electrical recombination efficiency of individual edge dislocations and stacking fault defects in n-type silicon,” Phys. Status Solidi A 55, 771 (1979).
40. K. Wada, N. Inoue, and K. Kohra, “ Diffusion-limited growth of oxide precipitates in Czochralski silicon,” J. Cryst. Growth 49, 749 (1980).
41. G. Hahn, M. Käs, and B. Herzog, “ Hydrogenation in crystalline Silicon Materials for photovoltaic Application,” Solid State Phenom. 156–158, 343 (2009).
42. E. Cartier, J. H. Stathis, and D. A. Buchanan, “ Passivation and depassivation of silicon dangling bonds at the Si/SiO2 interface by atomic hydrogen,” Appl. Phys. Lett. 63, 1510 (1993).
43. R. C. Newman, M. J. Binns, W. P. Brown, F. M. Livingston, S. Messoloras, R. J. Stewart, and J. G. Wilkes, “ Precipitation of oxygen in silicon: kinetics, solubility, diffusivity and particle size,” Physica B 116, 264 (1983).
44. H. C. Sio, S. P. Phang, T. Trupke, and D. Macdonald, “ Impact of phosphorous gettering and hydrogenation on the surface recombination velocity of grain boundaries in p-type multicrystalline silicon,” IEEE J. Photovoltaics 5, 1357 (2015).
45. W. Shockley and W. T. Read, “ Statistics of the recombinations of holes and electrons,” Phys. Rev. 87, 835 (1952).
46. R. N. Hall, “ Electron-hole recombination in germanium,” Phys. Rev. 87, 387 (1952).

Data & Media loading...


Article metrics loading...



Supersaturated levels of interstitial oxygen in Czochralski silicon can lead to the formation of oxide precipitates. Although beneficial from an internal gettering perspective, oxygen-related extended defects give rise to recombination which reduces minority carrier lifetime. The highest efficiency silicon solar cells are made from -type substrates in which oxide precipitates can have a detrimental impact on cell efficiency. In order to quantify and to understand the mechanism of recombination in such materials, we correlate injection level-dependent minority carrier lifetime data measured with silicon nitride surface passivation with interstitial oxygen loss and precipitate concentration measurements in samples processed under substantially different conditions. We account for surface recombination, doping level, and precipitate morphology to present a generalised parameterisation of lifetime. The lifetime data are analysed in terms of recombination activity which is dependent on precipitate density or on the surface area of different morphologies of precipitates. Correlation of the lifetime data with interstitial oxygen loss data shows that the recombination activity is likely to be dependent on the precipitate surface area. We generalise our findings to estimate the impact of oxide precipitates with a given surface area on lifetime in both -type and -type silicon.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd