Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/118/22/10.1063/1.4936318
1.
1. Y. S. Lee, J. Heo, S. C. Siah, J. P. Mailoa, R. E. Brandt, S. B. Kim, R. G. Gordon, and T. Buonassisi, Energy Environ. Sci. 6, 2112 (2013).
http://dx.doi.org/10.1039/c3ee24461j
2.
2. C. G. Morales-Guio, S. D. Tilley, H. Vrubel, M. Grätzel, and X. Hu, Nat. Commun. 5, 3059 (2014).
http://dx.doi.org/10.1038/ncomms4059
3.
3. A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, and E. Thimsen, Nat. Mater. 10, 456 (2011).
http://dx.doi.org/10.1038/nmat3017
4.
4. K. P. Musselman, A. Wisnet, D. C. Iza, H. C. Hesse, C. Scheu, J. L. MacManus-Driscoll, and L. Schmidt-Mende, Adv. Mater. 22, E254 (2010).
http://dx.doi.org/10.1002/adma.201001455
5.
5. Y. S. Lee, D. Chua, R. E. Brandt, S. C. Siah, J. V. Li, J. P. Mailoa, S. W. Lee, R. G. Gordon, and T. Buonassisi, Adv. Mater. 26, 4704 (2014).
http://dx.doi.org/10.1002/adma.201401054
6.
6. K. P. Musselman, A. Marin, L. Schmidt-Mende, and J. L. MacManus-Driscoll, Adv. Funct. Mater. 22, 2202 (2012).
http://dx.doi.org/10.1002/adfm.201102263
7.
7. S. W. Lee, Y. S. Lee, J. Heo, S. C. Siah, D. Chua, R. E. Brandt, S. B. Kim, J. P. Mailoa, T. Buonassisi, and R. G. Gordon, Adv. Energy Mater. 4, 1301916 (2014).
http://dx.doi.org/10.1002/aenm.201301916
8.
8. H. J. Li, C. Y. Pu, C. Y. Ma, Sh. Li, W. J. Dong, S. Y. Bao, and Q. Y. Zhang, Thin Solid Films 520, 212 (2011).
http://dx.doi.org/10.1016/j.tsf.2011.07.037
9.
9. A. H. Jayatissa, K. Guo, and A. C. Jayasuriya, Appl. Surf. Sci. 255, 9474 (2009).
http://dx.doi.org/10.1016/j.apsusc.2009.07.072
10.
10. H. Kidowaki, T. Oku, and T. Akiyama, J. Phys.: Conf. Ser. 352, 012022 (2012).
http://dx.doi.org/10.1088/1742-6596/352/1/012022
11.
11. S. Masudy-Panah, K. Radhakrishnan, H. R. Tan, R. Yi, T. I. Wong, and G. K. Dalapati, Sol. Energy Mater. Sol. Cells 140, 266 (2015).
http://dx.doi.org/10.1016/j.solmat.2015.04.024
12.
12. F. Gao, X.-J. Liu, J.-S. Zhang, M.-Z. Song, and N. Li, J. Appl. Phys. 111, 084507 (2012).
http://dx.doi.org/10.1063/1.4704382
13.
13. Y. Peng, Z. Zhang, T. V. Pham, Y. Zhao, P. Wu, and J. Wang, J. Appl. Phys. 111, 103708 (2012).
http://dx.doi.org/10.1063/1.4719059
14.
14. Z. Zang, A. Nakamura, and J. Temmyo, Opt. Express 21, 11448 (2013).
http://dx.doi.org/10.1364/OE.21.011448
15.
15. S. C. Siah, Y. S. Lee, Y. Segal, and T. Buonassisi, J. Appl. Phys. 112, 084508 (2012).
http://dx.doi.org/10.1063/1.4758305
16.
16. G. Lai, Y. Wu, L. Lin, Y. Qu, and F. Lai, Appl. Surf. Sci. 285P, 755 (2013).
http://dx.doi.org/10.1016/j.apsusc.2013.08.122
17.
17. J. Li, Z. Mei, L. Liu, H. Liang, A. Azarov, A. Kuznetsov, Y. Liu, A. Ji, Q. Meng, and X. Du, Sci. Rep. 4, 7240 (2014).
http://dx.doi.org/10.1038/srep07240
18.
18. C. Malerba, C. L. A. Ricardo, M. D'Incau, F. Biccari, P. Scardi, and A. Mittiga, Sol. Energy Mater. Sol. Cells 105, 192 (2012).
http://dx.doi.org/10.1016/j.solmat.2012.06.017
19.
19. Z. Zhao, X. He, J. Yi, C. Ma, Y. Cao, and J. Qiu, RSC Adv. 3, 84 (2013).
http://dx.doi.org/10.1039/C2RA22297C
20.
20. S. Ishizuka, S. Kato, T. Maruyamai, and K. Akimoto, Jpn. J. Appl. Phys., Part 1 40, 2765 (2001).
http://dx.doi.org/10.1143/JJAP.40.2765
21.
21. Y. S. Lee, J. Heo, M. T. Winkler, S. C. Siah, S. B. Kim, R. G. Gordon, and T. Buonassisi, J. Mater. Chem. A 1, 15416 (2013).
http://dx.doi.org/10.1039/c3ta13208k
22.
22. Y. Nakano, S. Saeki, and T. Morikawa, Appl. Phys. Lett. 94, 022111 (2009).
http://dx.doi.org/10.1063/1.3072804
23.
23. L. Min, Z. Jun-Ying, Z. Yue, and W. Tian-Min, Chin. Phys. B 21, 087301 (2012).
http://dx.doi.org/10.1088/1674-1056/21/8/087301
24.
24. Y. S. Jung, H. W. Choi, and K. H. Kim, Jpn. J. Appl. Phys., Part 1 53, 11RA10 (2014).
http://dx.doi.org/10.7567/JJAP.53.11RA10
25.
25. Z. Zang, A. Nakamura, and J. Temmyo, Mater. Lett. 92, 188 (2013).
http://dx.doi.org/10.1016/j.matlet.2012.10.083
26.
26.See supplementary material at http://dx.doi.org/10.1063/1.4936318 for XRD spectra and corresponding crystal size of the main XRD peaks of CuO.[Supplementary Material]
27.
27. S. Masudy-Panah, G. K. Dalapati, K. Radhakrishnan, A. Kumar, H. R. Tan, E. N. Kumar, C. Vijila, C. C. Tan, and D. Z. Chi, Prog. Photovoltaics 23, 637 (2015).
http://dx.doi.org/10.1002/pip.2483
28.
28. S. Masudy-Panah, G. K. Dalapati, A. Kumar, K. Radhakrishnan, and H. R. Tan, J. Appl. Phys. 116, 074501 (2014).
http://dx.doi.org/10.1063/1.4893321
29.
29. J. Chrzanowski and J. C. Irwin, Solid State Commun. 70, 11 (1989).
http://dx.doi.org/10.1016/0038-1098(89)90457-2
30.
30. V. Hayez, J. Guillaume, A. Hubin, and H. Terryn, J. Raman Spectrosc. 35, 732 (2004).
http://dx.doi.org/10.1002/jrs.1194
31.
31. R. P. Vasquez, Surf. Sci. Spectra 5, 257 (1998).
http://dx.doi.org/10.1116/1.1247881
32.
32. H. Zhang, J.-L. Cao, G.-S. Shao, and Z.-Y. Yuan, J. Mater. Chem. 19, 6097 (2009).
http://dx.doi.org/10.1039/b911176j
33.
33. W. Zhao, W. Fu, H. Yang, C. Tian, M. Li, Y. Li, L. Zhang, Y. Sui, X. Zhou, H. Chena, and G. Zou, CrystEngComm 13, 2871 (2011).
http://dx.doi.org/10.1039/c0ce00829j
34.
34. J. Gan, V. Venkatachalapathy, B. G. Svensson, and E. V. Monakhov, Thin Solid Films 594, 250255 (2015).
http://dx.doi.org/10.1016/j.tsf.2015.05.029
35.
35. M. Heinemann, B. Eifert, and C. Heiliger, Phys. Rev. B 87, 115111 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.115111
36.
36. D. Dorranian, L. Dejam, A. H. Sari, and A. Hojabri, Eur. Phys. J.: Appl. Phys. 50, 20503 (2010).
http://dx.doi.org/10.1051/epjap/2010040
37.
37. G. K. Dalapati, S. L. Liew, A. S. W. Wong, Y. Chai, S. Y. Chiam, and D. Z. Chi, Appl. Lett. Phys. 98, 013507 (2011).
http://dx.doi.org/10.1063/1.3536523
38.
38. G. K. Dalapati, S. K. Batabyal, S. Masudy-Panah, Z. Su, A. Kushwaha, T. I. Wong, H. F. Liu, T. Bhat, A. Iskander, Y.-F. Lim, L. H. Wong, S. Tripathy, and D. Z. Chi, Mater. Lett. 160, 45 (2015).
http://dx.doi.org/10.1016/j.matlet.2015.07.089
39.
39. G. K. Dalapati, C. C. Tan, S. Masudy-Panah, H. R. Tan, and D. Z. Chi, Mater. Lett. 159, 455 (2015).
http://dx.doi.org/10.1016/j.matlet.2015.07.066
40.
40. S. Masudy-Panah, V. Kumar, C. C. Tan, K. Radhaknshnan, and D. Z. Chi, in Proceedings of the IEEE 5th International Nanoelectronics Conference Nanoelectronics Conference 2013 (INEC'13), Singapore, 2–4 January 2013, pp. 378380.
http://dx.doi.org/10.1109/INEC.2013.6466052
41.
41. V. Kumar, S. Masudy-Panah, C. C. Tan, T. K. S. Wong, D. Z. Chi, and G. K. Dalapati, in Proceedings of the IEEE 5th International Nanoelectronics Conference (INEC'13) Nanoelectronics Conference 2013, Singapore, 2–4 January 2013, pp. 443445.
http://dx.doi.org/10.1109/INEC.2013.6466072
http://aip.metastore.ingenta.com/content/aip/journal/jap/118/22/10.1063/1.4936318
Loading
/content/aip/journal/jap/118/22/10.1063/1.4936318
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/118/22/10.1063/1.4936318
2015-12-08
2016-12-11

Abstract

The structural and optical properties of sputter deposited nitrogen (N) doped CuO (CuO(N)) thin films are systematically investigated. It is found that the incorporation of N into CuO causes an enlargement of optical bandgap and reduction in resistivity of the CuO(N) films. Furthermore, a gradual phase transformation from CuO to CuO is observed with the increase in N concentration. The effects of annealing temperature on the structural properties of CuO (N) and its dependence on N concentration are also investigated. It is observed that the phase transformation process from CuO to CuO significantly depends on the N concentration and the annealing temperature. Heterojunction solar cells of -type CuO(N) on -type silicon (Si) substrate, -CuO(N)/-Si, are fabricated to investigate the impact of N doping on its photovoltaic properties.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/118/22/1.4936318.html;jsessionid=ljrHxYAE--ejQin6JNYI-vjD.x-aip-live-03?itemId=/content/aip/journal/jap/118/22/10.1063/1.4936318&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/118/22/10.1063/1.4936318&pageURL=http://scitation.aip.org/content/aip/journal/jap/118/22/10.1063/1.4936318'
Right1,Right2,Right3,