Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/118/22/10.1063/1.4937273
1.
1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.2059
2.
2. S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, Phys. Rev. B 62, 8212 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.8212
3.
3. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, Phys. Rev. Lett. 92, 113903 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.113903
4.
4. D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q. H. Park, Appl. Phys. Lett. 87, 203508 (2005).
http://dx.doi.org/10.1063/1.2132073
5.
5. Z. F. Yu, A. Raman, and S. H. Fan, Proc. Natl. Acad. Sci. U. S. A. 107, 17491 (2010).
http://dx.doi.org/10.1073/pnas.1008296107
6.
6. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Science 289, 604 (2000).
http://dx.doi.org/10.1126/science.289.5479.604
7.
7. K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, Nat. Mater. 2, 117 (2003).
http://dx.doi.org/10.1038/nmat802
8.
8. P. V. Braun and P. Wiltzius, Nature 402, 603 (1999).
http://dx.doi.org/10.1038/45137
9.
9. E. Graugnard, V. Chawla, D. Lorang, and C. J. Summers, Appl. Phys. Lett. 89, 211102 (2006).
http://dx.doi.org/10.1063/1.2387874
10.
10. S. Noda, in Wafer Bonding, edited by M. Alexe and U. Gösele ( Springer, Berlin Heidelberg, 2004), Vol. 75, p. 315.
11.
11. J. Kim, H. S. Kim, J. H. Choi, H. Jeon, Y. Yoon, J. Liu, J.-G. Park, and P. V. Braun, Chem. Mater. 26, 7051 (2014).
http://dx.doi.org/10.1021/cm5034645
12.
12. E. C. Nelson, N. L. Dias, K. P. Bassett, S. N. Dunham, V. Verma, M. Miyake, P. Wiltzius, J. A. Rogers, J. J. Coleman, X. L. Li, and P. V. Braun, Nat. Mater. 10, 676 (2011).
http://dx.doi.org/10.1038/nmat3071
13.
13. G. Subramania, Q. Li, Y.-J. Lee, J. J. Figiel, G. T. Wang, and A. J. Fischer, Nano Lett. 11, 4591 (2011).
http://dx.doi.org/10.1021/nl201867v
14.
14. F. Dimroth, Phys. Status Solidi C 3, 373 (2006).
http://dx.doi.org/10.1002/pssc.200564172
15.
15. H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363 (1994).
http://dx.doi.org/10.1063/1.358463
16.
16. K. J. Vahala, Nature 424, 839 (2003).
http://dx.doi.org/10.1038/nature01939
17.
17. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, Z. Ling, G. Harbers, and M. G. Craford, J. Display Technol. 3, 160 (2007).
http://dx.doi.org/10.1109/JDT.2007.895339
18.
18. R. J. Deri and E. Kapon, IEEE J. Quantum Electron. 27, 626 (1991).
http://dx.doi.org/10.1109/3.81372
19.
19. S. Lourdudoss and O. Kjebon, IEEE J. Sel. Top. Quantum Electron. 3, 749 (1997).
http://dx.doi.org/10.1109/2944.640630
20.
20. W. Metaferia, A. Dev, H. Kataria, C. Junesand, Y. T. Sun, S. Anand, J. Tommila, G. Pozina, L. Hultman, M. Guina, T. Niemi, and S. Lourdudoss, CrystEngComm 16, 4624 (2014).
http://dx.doi.org/10.1039/c3ce42231c
21.
21. O. Ueda, J. Electrochem. Soc. 135, 11C (1988).
http://dx.doi.org/10.1149/1.2095535
22.
22. N. Waldron, G. Wang, N. D. Nguyen, T. Orzali, C. Merckling, G. Brammertz, P. Ong, G. Winderickx, G. Hellings, G. Eneman, M. Caymax, M. Meuris, N. Horiguchi, and A. Thean, Graphene, Ge/III-V, Nanowires, and Emerging Materials for Post-CMOS Applications 4 ( The Electrochemical Society, New Jersey, 2012), Vol. 45, p. 115.
23.
23. W. Stober, A. Fink, and E. Bohn, J. Colloid Interface Sci. 26, 62 (1968).
http://dx.doi.org/10.1016/0021-9797(68)90272-5
24.
24. A. A. Chabanov, Y. Jun, and D. J. Norris, Appl. Phys. Lett. 84, 3573 (2004).
http://dx.doi.org/10.1063/1.1737066
25.
25. P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, Chem. Mater. 11, 2132 (1999).
http://dx.doi.org/10.1021/cm990080+
26.
26. Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, Nature 414, 289 (2001).
http://dx.doi.org/10.1038/35104529
27.
27. E. K. Miller, IEEE Trans. Antennas Propag. 36, 1281 (1988).
http://dx.doi.org/10.1109/8.8607
28.
28. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. ( Princeton University Press, New Jersey, 2008), Vol. 1.
29.
29.See supplementary material at http://dx.doi.org/10.1063/1.4937273 for a Word file Supplementary Material.docx which contains more SEM and STEM images of the 3D GaInP.[Supplementary Material]
30.
30. O. Ho-jin, S. Masakazu, N. Yoshiaki, and S. Yukihiro, Jpn. J. Appl. Phys., Part 1 42, 6284 (2003).
http://dx.doi.org/10.1143/JJAP.42.6284
31.
31. H. Heinecke, A. Brauers, F. Grafahrend, C. Plass, N. Pütz, K. Werner, M. Weyers, H. Lüth, and P. Balk, J. Cryst. Growth 77, 303 (1986).
http://dx.doi.org/10.1016/0022-0248(86)90316-7
32.
32. S. H. Chan, S. M. Sze, C. Y. Chang, and W. I. Lee, Appl. Phys. Lett. 65, 2217 (1994).
http://dx.doi.org/10.1063/1.113039
33.
33. G. M. Cohen, D. Ritter, V. Richter, and R. Kalish, Appl. Phys. Lett. 74, 43 (1999).
http://dx.doi.org/10.1063/1.123127
34.
34. M. del P. Rodríguez-Torres, A. Y. Gorbatchev, V. A. Mishurnyi, F. de Anda, V. H. Mendez-García, R. Asomoza, Y. Kudriavtsev, and I. C. Hernandez, J. Cryst. Growth 277, 138 (2005).
http://dx.doi.org/10.1016/j.jcrysgro.2005.01.092
35.
35. K. Yuan, K. Radhakrishnan, H. Q. Zheng, Q. D. Zhuang, and G. I. Ing, Thin Solid Films 391, 36 (2001).
http://dx.doi.org/10.1016/S0040-6090(01)00966-X
36.
36. Q. K. Yang, A. Z. Li, and J. X. Chen, J. Appl. Phys. 83, 5792 (1998).
http://dx.doi.org/10.1063/1.367434
37.
37. B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 68, 643 (1996).
http://dx.doi.org/10.1063/1.116495
38.
38. Y.-L. Tsai, R.-H. Horng, M.-C. Tseng, C.-h. Kuo, P.-L. Liu, D.-S. Wuu, and D.-Y. Lin, J. Cryst. Growth 311, 3220 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2009.03.028
39.
39. N. J. Quitoriano and E. A. Fitzgerald, J. Appl. Phys. 102, 033511 (2007).
http://dx.doi.org/10.1063/1.2764204
40.
40. L. Vegard, Z. Phys. 5, 17 (1921).
http://dx.doi.org/10.1007/BF01349680
41.
41. H. Angerer, D. Brunner, F. Freudenberg, O. Ambacher, M. Stutzmann, R. Hopler, T. Metzger, E. Born, G. Dollinger, A. Bergmaier, S. Karsch, and H. J. Korner, Appl. Phys. Lett. 71, 1504 (1997).
http://dx.doi.org/10.1063/1.119949
42.
42. W. E. Hoke, T. D. Kennedy, and A. Torabi, Appl. Phys. Lett. 79, 4160 (2001).
http://dx.doi.org/10.1063/1.1425954
43.
43. P. F. Fewster, Semicond. Sci. Technol. 8, 1915 (1993).
http://dx.doi.org/10.1088/0268-1242/8/11/001
44.
44. H. Heinke, S. Einfeldt, B. Kuhnheinrich, G. Plahl, M. O. Moller, and G. Landwehr, J. Phys. D: Appl. Phys. 28, A104 (1995).
http://dx.doi.org/10.1088/0022-3727/28/4A/020
45.
45. S. Pereira, M. R. Correia, E. Pereira, K. P. O'Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. J. Deatcher, Appl. Phys. Lett. 81, 3500 (2002).
http://dx.doi.org/10.1063/1.1519670
46.
46. D. T. J. Hurle and P. Rudolph, J. Cryst. Growth 264, 550 (2004).
http://dx.doi.org/10.1016/j.jcrysgro.2003.12.035
47.
47. D. L. Dheeraj, G. Patriarche, L. Largeau, H. L. Zhou, A. T. J. van Helvoort, F. Glas, J. C. Harmand, B. O. Fimland, and H. Weman, Nanotechnology 19, 275605 (2008).
http://dx.doi.org/10.1088/0957-4484/19/27/275605
48.
48. D. Kriegner, J. M. Persson, T. Etzelstorfer, D. Jacobsson, J. Wallentin, J. B. Wagner, K. Deppert, M. T. Borgstrom, and J. Stangl, Thin Solid Films 543, 100 (2013).
http://dx.doi.org/10.1016/j.tsf.2013.02.112
49.
49. Y. Q. Wang, Z. L. Wang, T. Brown, A. Brown, and G. May, Appl. Phys. Lett. 77, 223 (2000).
http://dx.doi.org/10.1063/1.126931
50.
50. J. E. Bernard, S. Froyen, and A. Zunger, Phys. Rev. B 44, 11178 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.11178
51.
51. S. Froyen and A. Zunger, Phys. Rev. Lett. 66, 2132 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.2132
52.
52. R. M. France, W. E. McMahon, A. G. Norman, J. F. Geisz, and M. J. Romero, J. Appl. Phys. 112, 023520 (2012).
http://dx.doi.org/10.1063/1.4739725
53.
53. E. Spiecker, M. Seibt, W. Schröter, R. Winterhoff, and F. Scholz, Appl. Surf. Sci. 188, 61 (2002).
http://dx.doi.org/10.1016/S0169-4332(01)00731-0
54.
54. A. G. Norman, R. M. France, W. E. McMahon, J. F. Geisz, and M. J. Romero, in 18th Microscopy of Semiconducting Materials Conference (MSM XVIII) (2013), Vol. 471.
55.
55. Y. Kaneko and K. Kishino, J. Appl. Phys. 76, 1809 (1994).
http://dx.doi.org/10.1063/1.357699
http://aip.metastore.ingenta.com/content/aip/journal/jap/118/22/10.1063/1.4937273
Loading
/content/aip/journal/jap/118/22/10.1063/1.4937273
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/118/22/10.1063/1.4937273
2015-12-09
2016-09-28

Abstract

Three-dimensional (3D) photonic crystals are one class of materials where epitaxy, and the resultant attractive electronic properties, would enable new functionalities for optoelectronic devices. Here we utilize self-assembled colloidal templates to fabricate epitaxially grown single crystal 3D mesostructured GaInP (GaInP) semiconductor photonic crystals using hydride vapor phase epitaxy(HVPE). The epitaxial relationship between the 3D GaInP and the substrate is preserved during the growth through the complex geometry of the template as confirmed by X-ray diffraction(XRD) and high resolution transmission electron microscopy. XRD reciprocal space mapping of the 3D epitaxial layer further demonstrates the film to be nearly fully relaxed with a negligible strain gradient. Fourier transform infrared spectroscopy reflection measurement indicates the optical properties of the photonic crystal which agree with finite difference time domain simulations. This work extends the scope of the very few known methods for the fabrication of epitaxial III-V 3D mesostructured materials to the well-developed HVPE technique.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/118/22/1.4937273.html;jsessionid=H4Qu0ffxJjSdy9IlFOCU1pGG.x-aip-live-03?itemId=/content/aip/journal/jap/118/22/10.1063/1.4937273&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/118/22/10.1063/1.4937273&pageURL=http://scitation.aip.org/content/aip/journal/jap/118/22/10.1063/1.4937273'
Right1,Right2,Right3,