Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
2. S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, Phys. Rev. B 62, 8212 (2000).
3. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, Phys. Rev. Lett. 92, 113903 (2004).
4. D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q. H. Park, Appl. Phys. Lett. 87, 203508 (2005).
5. Z. F. Yu, A. Raman, and S. H. Fan, Proc. Natl. Acad. Sci. U. S. A. 107, 17491 (2010).
6. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Science 289, 604 (2000).
7. K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, Nat. Mater. 2, 117 (2003).
8. P. V. Braun and P. Wiltzius, Nature 402, 603 (1999).
9. E. Graugnard, V. Chawla, D. Lorang, and C. J. Summers, Appl. Phys. Lett. 89, 211102 (2006).
10. S. Noda, in Wafer Bonding, edited by M. Alexe and U. Gösele ( Springer, Berlin Heidelberg, 2004), Vol. 75, p. 315.
11. J. Kim, H. S. Kim, J. H. Choi, H. Jeon, Y. Yoon, J. Liu, J.-G. Park, and P. V. Braun, Chem. Mater. 26, 7051 (2014).
12. E. C. Nelson, N. L. Dias, K. P. Bassett, S. N. Dunham, V. Verma, M. Miyake, P. Wiltzius, J. A. Rogers, J. J. Coleman, X. L. Li, and P. V. Braun, Nat. Mater. 10, 676 (2011).
13. G. Subramania, Q. Li, Y.-J. Lee, J. J. Figiel, G. T. Wang, and A. J. Fischer, Nano Lett. 11, 4591 (2011).
14. F. Dimroth, Phys. Status Solidi C 3, 373 (2006).
15. H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363 (1994).
16. K. J. Vahala, Nature 424, 839 (2003).
17. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, Z. Ling, G. Harbers, and M. G. Craford, J. Display Technol. 3, 160 (2007).
18. R. J. Deri and E. Kapon, IEEE J. Quantum Electron. 27, 626 (1991).
19. S. Lourdudoss and O. Kjebon, IEEE J. Sel. Top. Quantum Electron. 3, 749 (1997).
20. W. Metaferia, A. Dev, H. Kataria, C. Junesand, Y. T. Sun, S. Anand, J. Tommila, G. Pozina, L. Hultman, M. Guina, T. Niemi, and S. Lourdudoss, CrystEngComm 16, 4624 (2014).
21. O. Ueda, J. Electrochem. Soc. 135, 11C (1988).
22. N. Waldron, G. Wang, N. D. Nguyen, T. Orzali, C. Merckling, G. Brammertz, P. Ong, G. Winderickx, G. Hellings, G. Eneman, M. Caymax, M. Meuris, N. Horiguchi, and A. Thean, Graphene, Ge/III-V, Nanowires, and Emerging Materials for Post-CMOS Applications 4 ( The Electrochemical Society, New Jersey, 2012), Vol. 45, p. 115.
23. W. Stober, A. Fink, and E. Bohn, J. Colloid Interface Sci. 26, 62 (1968).
24. A. A. Chabanov, Y. Jun, and D. J. Norris, Appl. Phys. Lett. 84, 3573 (2004).
25. P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, Chem. Mater. 11, 2132 (1999).
26. Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, Nature 414, 289 (2001).
27. E. K. Miller, IEEE Trans. Antennas Propag. 36, 1281 (1988).
28. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. ( Princeton University Press, New Jersey, 2008), Vol. 1.
29.See supplementary material at for a Word file Supplementary Material.docx which contains more SEM and STEM images of the 3D GaInP.[Supplementary Material]
30. O. Ho-jin, S. Masakazu, N. Yoshiaki, and S. Yukihiro, Jpn. J. Appl. Phys., Part 1 42, 6284 (2003).
31. H. Heinecke, A. Brauers, F. Grafahrend, C. Plass, N. Pütz, K. Werner, M. Weyers, H. Lüth, and P. Balk, J. Cryst. Growth 77, 303 (1986).
32. S. H. Chan, S. M. Sze, C. Y. Chang, and W. I. Lee, Appl. Phys. Lett. 65, 2217 (1994).
33. G. M. Cohen, D. Ritter, V. Richter, and R. Kalish, Appl. Phys. Lett. 74, 43 (1999).
34. M. del P. Rodríguez-Torres, A. Y. Gorbatchev, V. A. Mishurnyi, F. de Anda, V. H. Mendez-García, R. Asomoza, Y. Kudriavtsev, and I. C. Hernandez, J. Cryst. Growth 277, 138 (2005).
35. K. Yuan, K. Radhakrishnan, H. Q. Zheng, Q. D. Zhuang, and G. I. Ing, Thin Solid Films 391, 36 (2001).
36. Q. K. Yang, A. Z. Li, and J. X. Chen, J. Appl. Phys. 83, 5792 (1998).
37. B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 68, 643 (1996).
38. Y.-L. Tsai, R.-H. Horng, M.-C. Tseng, C.-h. Kuo, P.-L. Liu, D.-S. Wuu, and D.-Y. Lin, J. Cryst. Growth 311, 3220 (2009).
39. N. J. Quitoriano and E. A. Fitzgerald, J. Appl. Phys. 102, 033511 (2007).
40. L. Vegard, Z. Phys. 5, 17 (1921).
41. H. Angerer, D. Brunner, F. Freudenberg, O. Ambacher, M. Stutzmann, R. Hopler, T. Metzger, E. Born, G. Dollinger, A. Bergmaier, S. Karsch, and H. J. Korner, Appl. Phys. Lett. 71, 1504 (1997).
42. W. E. Hoke, T. D. Kennedy, and A. Torabi, Appl. Phys. Lett. 79, 4160 (2001).
43. P. F. Fewster, Semicond. Sci. Technol. 8, 1915 (1993).
44. H. Heinke, S. Einfeldt, B. Kuhnheinrich, G. Plahl, M. O. Moller, and G. Landwehr, J. Phys. D: Appl. Phys. 28, A104 (1995).
45. S. Pereira, M. R. Correia, E. Pereira, K. P. O'Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. J. Deatcher, Appl. Phys. Lett. 81, 3500 (2002).
46. D. T. J. Hurle and P. Rudolph, J. Cryst. Growth 264, 550 (2004).
47. D. L. Dheeraj, G. Patriarche, L. Largeau, H. L. Zhou, A. T. J. van Helvoort, F. Glas, J. C. Harmand, B. O. Fimland, and H. Weman, Nanotechnology 19, 275605 (2008).
48. D. Kriegner, J. M. Persson, T. Etzelstorfer, D. Jacobsson, J. Wallentin, J. B. Wagner, K. Deppert, M. T. Borgstrom, and J. Stangl, Thin Solid Films 543, 100 (2013).
49. Y. Q. Wang, Z. L. Wang, T. Brown, A. Brown, and G. May, Appl. Phys. Lett. 77, 223 (2000).
50. J. E. Bernard, S. Froyen, and A. Zunger, Phys. Rev. B 44, 11178 (1991).
51. S. Froyen and A. Zunger, Phys. Rev. Lett. 66, 2132 (1991).
52. R. M. France, W. E. McMahon, A. G. Norman, J. F. Geisz, and M. J. Romero, J. Appl. Phys. 112, 023520 (2012).
53. E. Spiecker, M. Seibt, W. Schröter, R. Winterhoff, and F. Scholz, Appl. Surf. Sci. 188, 61 (2002).
54. A. G. Norman, R. M. France, W. E. McMahon, J. F. Geisz, and M. J. Romero, in 18th Microscopy of Semiconducting Materials Conference (MSM XVIII) (2013), Vol. 471.
55. Y. Kaneko and K. Kishino, J. Appl. Phys. 76, 1809 (1994).

Data & Media loading...


Article metrics loading...



Three-dimensional (3D) photonic crystals are one class of materials where epitaxy, and the resultant attractive electronic properties, would enable new functionalities for optoelectronic devices. Here we utilize self-assembled colloidal templates to fabricate epitaxially grown single crystal 3D mesostructured GaInP (GaInP) semiconductor photonic crystals using hydride vapor phase epitaxy(HVPE). The epitaxial relationship between the 3D GaInP and the substrate is preserved during the growth through the complex geometry of the template as confirmed by X-ray diffraction(XRD) and high resolution transmission electron microscopy. XRD reciprocal space mapping of the 3D epitaxial layer further demonstrates the film to be nearly fully relaxed with a negligible strain gradient. Fourier transform infrared spectroscopy reflection measurement indicates the optical properties of the photonic crystal which agree with finite difference time domain simulations. This work extends the scope of the very few known methods for the fabrication of epitaxial III-V 3D mesostructured materials to the well-developed HVPE technique.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd