Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/118/22/10.1063/1.4937409
1.
1. K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, “ LixCoO2 (0 < x < 1): A new cathode material for batteries of high energy density,” Mater. Res. Bull. 15, 783789 (1980).
http://dx.doi.org/10.1016/0025-5408(80)90012-4
2.
2. B. Huang, Y. I. Jang, Y. M. Chiang, and D. R. Sadoway, “ Electrochemical evaluation of LiCoO2 synthesized by decomposition and intercalation of hydroxides for lithium-ion battery applications,” J. Appl. Electrochem. 28, 13651369 (1998).
http://dx.doi.org/10.1023/A:1003443108681
3.
3. W.-S. Yoon, K.-B. Kim, M.-G. Kim, M.-K. Lee, H.-J. Shin, J.-M. Lee et al., “ Oxygen contribution on Li-ion intercalation−deintercalation in LiCoO2 investigated by O K-edge and Co L-edge x-ray absorption spectroscopy,” J. Phys. Chem. B 106, 25262532 (2002).
http://dx.doi.org/10.1021/jp013735e
4.
4. H. Wang, Y. I. Jang, B. Huang, D. R. Sadoway, and Y. M. Chiang, “ TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries,” J. Electrochem. Soc. 146, 473480 (1999).
http://dx.doi.org/10.1149/1.1391631
5.
5. F. X. Hart and J. B. Bates, “ Lattice model calculation of the strain energy density and other properties of crystalline LiCoO2,” J. Appl. Phys. 83, 75607566 (1998).
http://dx.doi.org/10.1063/1.367521
6.
6. Y. Qi, L. G. Hector, C. James, and K. J. Kim, “ Lithium concentration dependent elastic properties of battery electrode materials from first principles calculations,” J. Electrochem. Soc. 161, F3010F3018 (2014).
http://dx.doi.org/10.1149/2.0031411jes
7.
7. D. R. Diercks, M. Musselman, A. Morgenstern, T. Wilson, M. Kumar, K. Smith et al., “ Evidence for anisotropic mechanical behavior and nanoscale chemical heterogeneity in cycled LiCoO2,” J. Electrochem. Soc. 161, F3039F3045 (2014).
http://dx.doi.org/10.1149/2.0071411jes
8.
8. P. Hohenberg and W. Kohn, “ Inhomogeneous electron gas,” Phys. Rev. 136, B864B871 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
9.
9. W. Kohn and L. J. Sham, “ Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, A1133A1138 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
10.
10. J. P. Perdew, K. Burke, and M. Ernzerhof, “ Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 38653868 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
11.
11. J. P. Perdew, K. Burke, and M. Ernzerhof, “ Generalized gradient approximation made simple,” Phys. Rev. Lett. 78, 13961396 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.1396
12.
12. P. E. Blöchl, “ Projector augmented-wave method,” Phys. Rev. B 50, 1795317979 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
13.
13. G. Kresse and D. Joubert, “ From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 17581775 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
14.
14. G. Kresse and J. Furthmüller, “ Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 1116911186 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
15.
15. G. Kresse and J. Furthmüller, “ Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 1550 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
16.
16. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Payne, “ First principles methods using CASTEP,” Zeitschrift für Kristallographie – Crystalline Materials 220, 567570 (2009).
http://dx.doi.org/10.1524/zkri.220.5.567.65075
17.
17. T. J. Giese and D. M. York, “ Density-functional expansion methods: Evaluation of LDA, GGA, and meta-GGA functionals and different integral approximations,” J. Chem. Phys. 133, 244107 (2010).
http://dx.doi.org/10.1063/1.3515479
18.
18. F. Zhou, M. Cococcioni, C. A. Marianetti, D. Morgan, and G. Ceder, “ First-principles prediction of redox potentials in transition-metal compounds with LDA+U,” Phys. Rev. B 70, 235121 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.235121
19.
19. G. Ceder and A. Van der Ven, “ Phase diagrams of lithium transition metal oxides: Investigations from first principles,” Electrochim. Acta 45, 131150 (1999).
http://dx.doi.org/10.1016/S0013-4686(99)00199-1
20.
20. H. J. Monkhorst and J. D. Pack, “ Special points for Brillouin-zone integrations,” Phys. Rev. B 13, 51885192 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
21.
21. L. Wu, W. H. Lee, and J. Zhang, “ First principles study on the electrochemical, thermal and mechanical properties of LiCoO2 for thin film rechargeable battery,” Mater. Today 1, 8293 (2014).
http://dx.doi.org/10.1016/j.matpr.2014.09.017
22.
22. T. Motohashi, Y. Katsumata, T. Ono, R. Kanno, M. Karppinen, and H. Yamauchi, “ Synthesis and properties of CoO2, the x = 0 end member of the LixCoO2 and NaxCoO2 systems,” Chem. Mater. 19, 50635066 (2007).
http://dx.doi.org/10.1021/cm0702464
23.
23. T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, and H. Komori, “ Comparative study of LiCoO2, LiNi12Co12O2 and LiNiO2 for 4 volt secondary lithium cells,” Electrochim. Acta 38, 11591167 (1993).
http://dx.doi.org/10.1016/0013-4686(93)80046-3
24.
24. F. Xiong, H. J. Yan, Y. Chen, B. Xu, J. X. Le, and C. Y. Ouyang, “ The atomic and electronic structure changes upon delithiation of LiCoO2: From first principles calculations,” Int. J. Electrochem. Sci. 7, 9390 (2012), available at http://www.electrochemsci.org/papers/vol7/71009390.pdf.
25.
25. J. N. Reimers and J. R. Dahn, “ Electrochemical and in situ x-ray diffraction studies of lithium intercalation in LixCoO2,” J. Electrochem. Soc. 139, 20912097 (1992).
http://dx.doi.org/10.1149/1.2221184
26.
26. A. Van der Ven, M. Aydinol, G. Ceder, G. Kresse, and J. Hafner, “ First-principles investigation of phase stability in LixCoO2,” Phys. Rev. B 58, 29752987 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.2975
27.
27. M. Qu, W. H. Woodford, J. M. Maloney, W. C. Carter, Y.-M. Chiang, and K. J. Van Vliet, “ Nanomechanical quantification of elastic, plastic, and fracture properties of LiCoO2,” Adv. Energy Mater. 2, 940944 (2012).
http://dx.doi.org/10.1002/aenm.201200107
28.
28. X. Wang, I. Loa, K. Kunc, K. Syassen, and M. Amboage, “ Effect of pressure on the structural properties and Raman modes of LixCoO2,” Phys. Rev. B 72, 224102 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.224102
29.
29. J. M. J. d. Toonder, J. A. W. v. Dommelen, and F. P. T. Baaijens, “ The relation between single crystal elasticity and the effective elastic behaviour of polycrystalline materials: Theory, measurement and computation,” Modell. Simul. Mater. Sci. Eng. 7, 909 (1999).
http://dx.doi.org/10.1088/0965-0393/7/6/301
30.
30. G. G. Amatucci, J. M. Tarascon, and L. C. Klein, “ CoO2, the end member of the LixCoO2 solid solution,” J. Electrochem. Soc. 143, 11141123 (1996).
http://dx.doi.org/10.1149/1.1836594
31.
31. T. A. Manz and D. S. Sholl, “ Chemically meaningful atomic charges that reproduce the electrostatic potential in periodic and nonperiodic materials,” J. Chem. Theory Comput. 6, 24552468 (2010).
http://dx.doi.org/10.1021/ct100125x
32.
32. T. A. Manz and D. S. Sholl, “ Methods for computing accurate atomic spin moments for collinear and noncollinear magnetism in periodic and nonperiodic materials,” J. Chem. Theory Comput. 7, 41464164 (2011).
http://dx.doi.org/10.1021/ct200539n
33.
33. T. A. Manz and D. S. Sholl, “ Improved atoms-in-molecule charge partitioning functional for simultaneously reproducing the electrostatic potential and chemical states in periodic and nonperiodic materials,” J. Chem. Theory Comput. 8, 28442867 (2012).
http://dx.doi.org/10.1021/ct3002199
34.
34. M. A. Caro, S. Schulz, and E. P. O'Reilly, “ Comparison of stress and total energy methods for calculation of elastic properties of semiconductors,” J. Phys.: Condens. Matter 25, 025803 (2013).
http://dx.doi.org/10.1088/0953-8984/25/2/025803
35.
35. S. F. Pugh, “ XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals,” London, Edinburgh, Dublin Philos. Mag. J. Sci. 45, 823843 (1954).
http://dx.doi.org/10.1080/14786440808520496
36.
36. D. Ensling, A. Thissen, S. Laubach, P. C. Schmidt, and W. Jaegermann, “ Electronic structure of LiCoO2 thin films: A combined photoemission spectroscopy and density functional theory study,” Phys. Rev. B 82, 195431 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.195431
37.
37. J. T. Hertz, Q. Huang, T. McQueen, T. Klimczuk, J. W. G. Bos, L. Viciu et al., “ Magnetism and structure of and comparison to LiCoO2,” Phys. Rev. B 77, 075119 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.075119
38.
38. J. Li, N. V. Medhekar, and V. B. Shenoy, “ Bonding charge density and ultimate strength of monolayer transition metal dichalcogenides,” J. Phys. Chem. C 117, 1584215848 (2013).
http://dx.doi.org/10.1021/jp403986v
39.
39. W. Tang, E. Sanville, and G. Henkelman, “ A grid-based Bader analysis algorithm without lattice bias,” J. Phys.: Condens. Matter 21, 084204 (2009).
http://dx.doi.org/10.1088/0953-8984/21/8/084204
40.
40. C.-S. Man and M. Huang, “ A simple explicit formula for the Voigt-Reuss-Hill average of elastic polycrystals with arbitrary crystal and texture symmetries,” J. Elasticity 105, 2948 (2011).
http://dx.doi.org/10.1007/s10659-011-9312-y
http://aip.metastore.ingenta.com/content/aip/journal/jap/118/22/10.1063/1.4937409
Loading
/content/aip/journal/jap/118/22/10.1063/1.4937409
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/118/22/10.1063/1.4937409
2015-12-14
2016-09-27

Abstract

The mechanical properties of LiCoO under various Li concentrations and associated anisotropy have been systematically studied using the first principles method. During the lithium intercalation process, the Young's modulus,bulk modulus,shear modulus, and ultimate strength increase with increasing lithium concentration. Strong anisotropy of mechanical properties between a-axis and c-axis in LiCoO is identified at low lithium concentrations, and the anisotropy decreases with increasing lithium concentration. The observed lithium concentration dependence and anisotropy are explained by analyzing the charge transfer using Bader charge analysis, bond order analysis, and bond strength by investigating partial density of states and charge density difference. With the decrease of Li concentration, the charge depletion in the bonding regions increases, indicating a weaker Co-O bond strength. Additionally, the Young's modulus,bulk modulus,shear modulus, and toughness are obtained by simulating tensile tests. From the simulated stress-strain curves, LiCoO shows the highest toughness, which is in contraction with Pugh criterion prediction based on elastic properties only.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/118/22/1.4937409.html;jsessionid=FqtNs5h_8qloQ98H2gWmZVLO.x-aip-live-03?itemId=/content/aip/journal/jap/118/22/10.1063/1.4937409&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/118/22/10.1063/1.4937409&pageURL=http://scitation.aip.org/content/aip/journal/jap/118/22/10.1063/1.4937409'
Right1,Right2,Right3,