Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/118/23/10.1063/1.4937400
1.
1. J. A. Cooper, M. R. Melloch, R. Singh, A. Agarwal, and J. W. Palmour, IEEE Trans. Electron Devices 49, 658 (2002).
http://dx.doi.org/10.1109/16.992876
2.
2. Z. Chen, Y. Xu, E. L. Garfunkel, L. C. Feldman, T. Buyuklimanli, W. Ou, J. Serfass, A. Wan, and S. Dhar, Appl. Surf. Sci. 317, 593 (2014).
http://dx.doi.org/10.1016/j.apsusc.2014.08.181
3.
3. Y. K. Sharma, A. C. Ahyi, T. Isaacs-Smith, A. Modic, M. Park, Y. Xu, E. L. Garfunkel, S. Dhar, L. C. Feldman, and J. R. Williams, IEEE Electron Device Lett. 34, 175 (2013).
http://dx.doi.org/10.1109/LED.2012.2232900
4.
4. G. Liu, A. C. Ahyi, Y. Xu, T. Isaacs-Smith, Y. K. Sharma, J. R. Williams, L. C. Feldman, and S. Dhar, IEEE Electron Device Lett. 34, 181 (2013).
http://dx.doi.org/10.1109/LED.2012.2233458
5.
5. Y. K. Sharma, A. C. Ahyi, T. Issacs-Smith, X. Shen, S. T. Pantelides, X. Zhu, L. C. Feldman, and J. R. Williams, Solid-State Electron. 68, 103 (2012).
http://dx.doi.org/10.1016/j.sse.2011.10.030
6.
6. X. Zhu, A. C. Ahyi, M. Y. Li, Z. J. Chen, J. Rozen, L. C. Feldman, and J. R. Williams, Solid-State Electron. 57, 76 (2011).
http://dx.doi.org/10.1016/j.sse.2010.12.002
7.
7. J. Rozen, A. C. Ahyi, X. G. Zhu, J. R. Williams, and L. C. Feldman, IEEE Trans. Electron Devices 58, 3808 (2011).
http://dx.doi.org/10.1109/TED.2011.2164800
8.
8. H. F. Li, S. Dimitrijev, H. B. Harrison, and D. Sweatman, Appl. Phys. Lett. 70, 2028 (1997).
http://dx.doi.org/10.1063/1.118773
9.
9. G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, M. Di Ventra, S. T. Pantelides, L. C. Feldman, and R. A. Weller, Appl. Phys. Lett. 76, 1713 (2000).
http://dx.doi.org/10.1063/1.126167
10.
10. G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, R. K. Chanana, R. A. Weller, S. T. Pantelides, L. C. Feldman, O. W. Holland, M. K. Das, and J. W. Palmour, IEEE Electron Device Lett. 22, 176 (2001).
http://dx.doi.org/10.1109/55.915604
11.
11. G. Y. Chung, J. R. Williams, C. C. Tin, K. McDonald, D. Farmer, R. K. Chanana, S. T. Pantelides, O. W. Holland, and L. C. Feldman, Appl. Surf. Sci. 184, 399 (2001).
http://dx.doi.org/10.1016/S0169-4332(01)00684-5
12.
12. G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, M. D. Ventra, S. T. Pantelides, L. C. Feldman, and R. A. Weller, in Wide-Bandgap Electronic Devices ( Mater. Res. Soc. Symp. Proc., 2000), Vol. 622.
13.
13. S. Dimitrijev, P. Jamet, and P. Tanner, J. Appl. Phys. 90, 5058 (2001).
http://dx.doi.org/10.1063/1.1412579
14.
14. A. J. Lelis, D. Habersat, R. Green, A. Ogunniti, M. Gurfinkel, J. Suehle, and N. Goldsman, IEEE Trans. Electron Devices 55, 1835 (2008).
http://dx.doi.org/10.1109/TED.2008.926672
15.
15. D. P. Ettisserry, N. Goldsman, A. Akturk, and A. J. Lelis, J. Appl. Phys. 116, 174502 (2014).
http://dx.doi.org/10.1063/1.4900981
16.
16. J. Rozen, S. Dhar, S. K. Dixit, V. V. Afanas'ev, F. O. Roberts, H. L. Dang, S. Wang, S. T. Pantelides, J. R. Williams, and L. C. Feldman, J. Appl. Phys. 103, 124513 (2008).
http://dx.doi.org/10.1063/1.2940736
17.
17. K. C. Chang, Y. Cao, L. M. Porter, J. Bentley, S. Dhar, L. C. Feldman, and J. R. Williams, J. Appl. Phys. 97, 104920 (2005).
http://dx.doi.org/10.1063/1.1904728
18.
18. Y. Xu, X. Zhu, H. D. Lee, C. Xu, S. M. Shubeita, A. C. Ahyi, Y. Sharma, J. R. Williams, W. Lu, S. Ceesay, B. R. Tuttle, A. Wan, S. T. Pantelides, T. Gustafsson, E. L. Garfunkel, and L. C. Feldman, J. Appl. Phys. 115, 033502 (2014).
http://dx.doi.org/10.1063/1.4861626
19.
19. F. Devynck, Z. Sljivancanin, and A. Pasquarello, Appl. Phys. Lett. 91, 061930 (2007).
http://dx.doi.org/10.1063/1.2769949
20.
20. P. Kruger, B. Baumeier, and J. Pollmann, Phys. Rev. B 77, 085329 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.085329
21.
21. T. Shirasawa, K. Hayashi, S. Mizuno, S. Tanaka, K. Nakatsuji, F. Komori, and H. Tochihara, Phys. Rev. Lett. 98, 136105 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.136105
22.
22. T. Shirasawa, K. Hayashi, H. Yoshida, S. Mizuno, S. Tanaka, T. Muro, Y. Tamenori, Y. Harada, T. Tokushima, Y. Horikawa, E. Kobayashi, T. Kinoshita, S. Shin, T. Takahashi, Y. Ando, K. Akagi, S. Tsuneyuki, and H. Tochihara, Phys. Rev. B 79, 241301(R) (2009).
http://dx.doi.org/10.1103/PhysRevB.79.241301
23.
23. D. Okamoto, H. Yano, T. Hatayama, and T. Fuyuki, Appl. Phys. Lett. 96, 203508 (2010).
http://dx.doi.org/10.1063/1.3432404
24.
24. D. Okamoto, H. Yano, K. Hirata, T. Hatayama, and T. Fuyuki, IEEE Electron Device Lett. 31, 710 (2010).
http://dx.doi.org/10.1109/LED.2010.2047239
25.
25. H. F. Li, S. Dimitrijev, D. Sweatman, H. B. Harrison, P. Tanner, and B. Feil, J. Appl. Phys. 86, 4316 (1999).
http://dx.doi.org/10.1063/1.371363
26.
26. X. Zhu, H. D. Lee, T. Feng, A. C. Ahyi, D. Mastrogiovanni, A. Wan, E. Garfunkel, J. R. Williams, T. Gustafsson, and L. C. Feldman, Appl. Phys. Lett. 97, 071908 (2010).
http://dx.doi.org/10.1063/1.3481672
27.
27. P. Balk and J. M. Eldridge, Proc. IEEE 57, 1558 (1969).
http://dx.doi.org/10.1109/PROC.1969.7336
28.
28. J. Eldridge and D. D. Kerr, J. Electrochem. Soc. 118, 986 (1971).
http://dx.doi.org/10.1149/1.2408238
29.
29. A. Tilocca, Phys. Rev. B 76, 224202 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.224202
30.
30. W. B. Ying, Y. Mizokawa, Y. B. Yu, Y. Kamiura, M. Iida, and K. Kawamoto, Appl. Surf. Sci. 100, 556 (1996).
http://dx.doi.org/10.1016/0169-4332(96)00338-8
31.
31. M. Rusop, X. M. Tian, S. M. Mominuzzaman, T. Soga, T. Jimbo, and M. Umeno, Sol. Energy 78, 406 (2005).
http://dx.doi.org/10.1016/j.solener.2004.08.005
32.
32. K. Z. Zhang, K. E. Litz, M. M. B. Holl, and F. R. McFeely, Appl. Phys. Lett. 72, 46 (1998).
http://dx.doi.org/10.1063/1.120641
33.
33. K. Z. Zhang, J. N. Greeley, M. M. B. Holl, and F. R. McFeely, J. Appl. Phys. 82, 2298 (1997).
http://dx.doi.org/10.1063/1.366037
34.
34. Y. Tu and J. Tersoff, Phys. Rev. Lett. 84, 4393 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4393
35.
35. K. McDonald, R. A. Weller, S. T. Pantelides, L. C. Feldman, G. Y. Chung, C. C. Tin, and J. R. Williams, J. Appl. Phys. 93, 2719 (2003).
http://dx.doi.org/10.1063/1.1542935
36.
36. L. K. Swanson, P. Fiorenza, F. Giannazzo, A. Frazzetto, and F. Roccaforte, Appl. Phys. Lett. 101, 193501 (2012).
http://dx.doi.org/10.1063/1.4766175
37.
37. P. Fiorenza, F. Giannazzo, M. Vivona, A. La Magna, and F. Roccaforte, Appl. Phys. Lett. 103, 153508 (2013).
http://dx.doi.org/10.1063/1.4824980
38.
38. D. B. M. Klaassen, Solid State Electron. 35, 961 (1992).
http://dx.doi.org/10.1016/0038-1101(92)90326-8
http://aip.metastore.ingenta.com/content/aip/journal/jap/118/23/10.1063/1.4937400
Loading
/content/aip/journal/jap/118/23/10.1063/1.4937400
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/118/23/10.1063/1.4937400
2015-12-17
2016-12-10

Abstract

Phosphorous and nitrogen are electrically active species at the SiO/SiC interface in SiCMOSFETs. We compare the concentration, chemical bonding, and etching behavior of P and N at the SiO/SiC(0001) interface using photoemission, ion scattering, and secondary ion mass spectrometry. Both interfacial P and N are found to be resistant to buffered HF solution etching at the SiO/SiC(0001) interface while both are completely removed from the SiO/Si interface. The medium energy ion scattering results of etched phosphosilicate glass/SiC not only provide an accurate coverage but also indicate that both the passivating nitrogen and phosphorus are confined to within 0.5 nm of the interface. Angle resolved photoemission shows that P and N are likely situated in different chemical environments at the interface. We conclude that N is primarily bound to Si atoms at the interface while P is primarily bound to O and possibly to Si or C. Different interface passivating element coverages and bonding configurations on different SiC crystal faces are also discussed. The study provides insights into the mechanisms by which P and N passivate the SiO/SiC(0001) interface and hence improve the performance of SiCMOSFETs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/118/23/1.4937400.html;jsessionid=fuIxguxrK4nNWviIJ0UeEPbj.x-aip-live-06?itemId=/content/aip/journal/jap/118/23/10.1063/1.4937400&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/118/23/10.1063/1.4937400&pageURL=http://scitation.aip.org/content/aip/journal/jap/118/23/10.1063/1.4937400'
Right1,Right2,Right3,