Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Y. J. Cho, H. S. Im, H. S. Kim, Y. Myung, S. H. Back, Y. R. Lim, C. S. Jung, D. M. Jang, J. Park, E. H. Cha, W. Il Cho, F. Shojaei, and H. S. Kang, ACS Nano 7, 9075 (2013).
2. E. J. Henderson, M. Seino, D. P. Puzzo, and G. A. Ozin, ACS Nano 4, 7683 (2010).
3. T. N. Lambert, N. L. Andrews, H. Gerung, T. J. Boyle, J. M. Oliver, B. S. Wilson, and S. M. Han, Small 3, 691 (2007).
4. S. Prabakar, A. Shiohara, S. Hanada, K. Fujioka, K. Yamamoto, and R. D. Tilley, Chem. Mater. 22, 482 (2010).
5. G. Kartopu, S. C. Bayliss, V. a. Karavanskii, R. J. Curry, R. Turan, and A. V. Sapelkin, J. Lumin. 101, 275 (2003).
6. Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, Appl. Phys. Lett. 59, 3168 (1991).
7. J. R. Heath, J. J. Shiang, and A. P. Alivisatos, J. Chem. Phys. 101, 1607 (1994).
8. B. R. Taylor, S. M. Kauzlarich, G. R. Delgado, and H. W. H. Lee, Chem. Mater. 11, 2493 (1999).
9. H. Yang, X. Wang, H. Shi, F. Wang, X. Gu, and X. Yao, J. Cryst. Growth 236, 371 (2002).
10. B. R. Taylor, G. A. Fox, L. J. Hope-Weeks, R. S. Maxwell, S. M. Kauzlarich, and H. W. Lee, Mater. Sci. Eng. B 96, 90 (2002).
11. V. Karavanskii, A. Lomov, A. Sutyrin, V. Bushuev, N. Loikho, N. Melnik, T. Zavaritskaya, and S. Bayliss, Thin Solid Films 437, 290 (2003).
12. N. Myung, X. Lu, K. P. Johnston, and A. J. Bard, Nano Lett. 4, 183 (2004).
13. X. Lu, B. A. Korgel, and K. P. Johnston, Nanotechnology 16, S389 (2005).
14. E. J. Henderson, C. M. Hessel, and J. G. C. Veinot, J. Am. Chem. Soc. 130, 3624 (2008).
15. N. H. Chou, K. D. Oyler, N. E. Motl, and R. E. Schaak, Chem. Mater. 21, 4105 (2009).
16. D. D. Vaughn, J. F. Bondi, and R. E. Schaak, Chem. Mater. 22, 6103 (2010).
17. D. A. Ruddy, J. C. Johnson, E. R. Smith, and N. R. Neale, ACS Nano 4, 7459 (2010).
18. T. Sameshima, H. Watakabe, H. Kanno, T. Sadoh, and M. Miyao, Thin Solid Films 487, 67 (2005).
19. C. Y. Ong, K. L. Pey, K. K. Ong, D. X. M. Tan, X. C. Wang, H. Y. Zheng, C. M. Ng, and L. Chan, Appl. Phys. Lett. 94, 082104 (2009).
20. M. Mulato, D. Toet, G. Aichmayr, P. V. Santos, and I. Chambouleyron, Appl. Phys. Lett. 70, 3570 (1997).
21. M. Mulato, D. Toet, G. Aichmayr, A. Spangenberg, P. V. Santos, and I. Chambouleyron, J. Non. Cryst. Solids 227–230, 930 (1998).
22. O. Salihoglu, U. Kuüruüm, H. Gul Yaglioglu, A. Elmali, and A. Aydinli, J. Appl. Phys. 109, 123108 (2011).
23. K. Ohdaira and H. Matsumura, Thin Solid Films 524, 161 (2012).
24. K. Sakaike, S. Higashi, H. Murakami, and S. Miyazaki, Thin Solid Films 516, 3595 (2008).
25. H.-D. Geiler, E. Glaser, G. Goütz, and M. Wagner, J. Appl. Phys. 59, 3091 (1986).
26. K. Ohdaira, T. Nishikawa, and H. Matsumura, J. Cryst. Growth 312, 2834 (2010).
27. D. Toet, P. M. Smith, T. W. Sigmon, T. Takehara, C. C. Tsai, W. R. Harshbarger, and M. O. Thompson, J. Appl. Phys. 85, 7914 (1999).
28. Y. Miyata, M. Furuta, T. Yoshioka, and T. Kawamura, J. Appl. Phys. 73, 3271 (1993).
29. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, Nano Lett. 5, 709 (2005).
30. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, J. Am. Chem. Soc. 128, 2115 (2006).
31. M. P. Melancon, W. Lu, Z. Yang, R. Zhang, Z. Cheng, A. M. Elliot, J. Stafford, T. Olson, J. Z. Zhang, and C. Li, Mol. Cancer Ther. 7, 1730 (2008).
32. J. Z. Zhang, J. Phys. Chem. Lett. 1, 686 (2010).
33. W. Lu, C. Xiong, G. Zhang, Q. Huang, R. Zhang, J. Z. Zhang, and C. Li, Clin. Cancer Res. 15, 876 (2009).
34. K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, and Z. Liu, Nano Lett. 10, 3318 (2010).
35. J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, J. Am. Chem. Soc. 133, 6825 (2011).
36. K. Yang, J. Wan, S. Zhang, B. Tian, Y. Zhang, and Z. Liu, Biomaterials 33, 2206 (2012).
37. A. Karatutlu, M. Song, A. P. Wheeler, O. Ersoy, W. R. Little, Y. Zhang, P. Puech, F. S. Boi, Z. Luklinska, and A. V. Sapelkin, RSC Adv. 5, 20566 (2015).
38. Y.-J. Guo, F. Yang, L. Zhang, J. Pi, J.-Y. Cai, and P.-H. Yang, Chem. Asian J. 9, 2272 (2014).
39.The volumes of 15 ml:15 ml:0.075 ml were used in the experiment for HF:H3PO4:H2O2, respectively. The optimum conditions were found out at the end of 115 trials of various amounts of the chemicals. The amount of H2O2 in the solution is particularly important since exceeding 0.075 ml of H2O2 may quickly cause the dissolution of all sample.
40. Y. Zhang, A. Karatutlu, O. Ersoy, W. Little, G. Cibin, A. Dent, and A. Sapelkin, J. Synchrotron Radiat. 22, 105 (2015).
41. I. H. Campbell and P. M. Fauchet, Solid State Commun. 58, 739 (1986).
42. H. Richter, Z. P. Wang, and L. Ley, Solid State Commun. 39, 625 (1981).
43. A. K. Das, S. Ghose, B. Dev, G. Kuri, and T. Yang, Appl. Surf. Sci. 165, 260 (2000).
44. H. C. Choi and J. M. Buriak, Chem. Commun. 2000, 1669.
45. J. M. Buriak, Chem. Rev. 102, 1271 (2002).
46. J. Sarathy, S. Shih, K. Jung, C. Tsai, K.-H. Li, D.-L. Kwong, J. C. Campbell, S.-L. Yau, and A. J. Bard, Appl. Phys. Lett. 60, 1532 (1992).
47. A. J. Steckl, J. Xu, and H. C. Mogul, Appl. Phys. Lett. 62, 2111 (1993).
48. X. Li and P. W. Bohn, Appl. Phys. Lett. 77, 2572 (2000).
49. A. Parbukov, V. Beklemyshev, V. Gontar, I. Makhonin, S. Gavrilov, and S. Bayliss, Mater. Sci. Eng. C 15, 121 (2001).
50. K. W. Kolasinski, Surf. Sci. 603, 1904 (2009).
51. H. Gerischer and W. Mindt, Electrochim. Acta 13, 1329 (1968).
52. M. Sendova-Vassileva, N. Tzenov, D. Dimova-Malinovska, M. Rosenbauer, M. Stutzmann, and K. V. Josepovits, Thin Solid Films 255, 282 (1995).
53. A. G. Cullis and L. T. Canham, Nature 353, 335 (1991).
54. O. Warburg, Science 123, 309 (1956).
55. D. Trachootham, J. Alexandre, and P. Huang, Nat. Rev. Drug Discov. 8, 579 (2009).
56. S. A. Levine and P. M. Kidd, J. Orthomol. Med. 1, 145 (1986).
57. S. Goodman, Med. Hypotheses 26, 207 (1988).
58. M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, and Y. Xia, Nat. Mater. 8, 935 (2009).
59.See supplementary material for a TEM measurement of free-standing Ge nanoparticles, table of the values of the size of Ge nanoparticles found by the RFC model upon the exposure of a He-Ne laser light (laser power = 2mW), comparison of Raman shift from a reference bulk Ge powder and that from 40 min exposed Ge nanoparticles by the laser light (laser power = 2mW), Raman spectra of Ge nanoparticles exposed to a He-Ne laser light with an excitation wavelength of 633 nm (laser power = 2mW) from 40 min to 100 min, schematic of the growth of free-standing Ge nanoparticles upon exposure of a 2 mW He-Ne laser, schematic representation of energy states referring to crystalline and amorphous state of germanium and two videos (a) and (b) on the explosive crystallisation effect.[Supplementary Material]

Data & Media loading...


Article metrics loading...



In this study, with the aid of Raman measurements, we have observed transformations in small (∼3 nm and ∼10 nm) free-standing Genanoparticles under laser light exposure. The nanoparticles were obtained by the chemical stain etching of a monocrystalline Ge wafer and of Gepowder and by colloidal synthesis route. We found that the transformation path depends on laser power and exposure time. At relatively low values of the laser power (2 mW) over a period of 100 min, the Raman signal indicates transformation of the sample from a nanocrystaline to bulk-like state, followed by partial oxidation and finally a conversion of the entire sample into alpha-quartz type GeO. However, when the laser power is set at 60 mW, we observed a heat release during an explosive crystallization of the nanocrystalline material into bulk Ge without noticeable signs of oxidation. Together with the transmission electron microscopy measurements, these results suggest that the chemical stain etching method for the preparation of porous Ge may not be a top-down process as has been widely considered, but a bottom up one. Systematic studies of the laser exposure on Genanoparticles prepared by colloidal synthesis results in the fact that the explosive crystallisation is common for H-terminated and partially disordered Genanoparticles regardless of its particle size. We suggest possible bio-medical applications for the observed phenomena.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd