Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/118/24/10.1063/1.4939066
1.
1. Y. J. Cho, H. S. Im, H. S. Kim, Y. Myung, S. H. Back, Y. R. Lim, C. S. Jung, D. M. Jang, J. Park, E. H. Cha, W. Il Cho, F. Shojaei, and H. S. Kang, ACS Nano 7, 9075 (2013).
http://dx.doi.org/10.1021/nn403674z
2.
2. E. J. Henderson, M. Seino, D. P. Puzzo, and G. A. Ozin, ACS Nano 4, 7683 (2010).
http://dx.doi.org/10.1021/nn102521k
3.
3. T. N. Lambert, N. L. Andrews, H. Gerung, T. J. Boyle, J. M. Oliver, B. S. Wilson, and S. M. Han, Small 3, 691 (2007).
http://dx.doi.org/10.1002/smll.200600529
4.
4. S. Prabakar, A. Shiohara, S. Hanada, K. Fujioka, K. Yamamoto, and R. D. Tilley, Chem. Mater. 22, 482 (2010).
http://dx.doi.org/10.1021/cm9030599
5.
5. G. Kartopu, S. C. Bayliss, V. a. Karavanskii, R. J. Curry, R. Turan, and A. V. Sapelkin, J. Lumin. 101, 275 (2003).
http://dx.doi.org/10.1016/S0022-2313(02)00570-7
6.
6. Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, Appl. Phys. Lett. 59, 3168 (1991).
http://dx.doi.org/10.1063/1.105773
7.
7. J. R. Heath, J. J. Shiang, and A. P. Alivisatos, J. Chem. Phys. 101, 1607 (1994).
http://dx.doi.org/10.1063/1.467781
8.
8. B. R. Taylor, S. M. Kauzlarich, G. R. Delgado, and H. W. H. Lee, Chem. Mater. 11, 2493 (1999).
http://dx.doi.org/10.1021/cm990203q
9.
9. H. Yang, X. Wang, H. Shi, F. Wang, X. Gu, and X. Yao, J. Cryst. Growth 236, 371 (2002).
http://dx.doi.org/10.1016/S0022-0248(01)02158-3
10.
10. B. R. Taylor, G. A. Fox, L. J. Hope-Weeks, R. S. Maxwell, S. M. Kauzlarich, and H. W. Lee, Mater. Sci. Eng. B 96, 90 (2002).
http://dx.doi.org/10.1016/S0921-5107(02)00297-0
11.
11. V. Karavanskii, A. Lomov, A. Sutyrin, V. Bushuev, N. Loikho, N. Melnik, T. Zavaritskaya, and S. Bayliss, Thin Solid Films 437, 290 (2003).
http://dx.doi.org/10.1016/S0040-6090(03)00158-5
12.
12. N. Myung, X. Lu, K. P. Johnston, and A. J. Bard, Nano Lett. 4, 183 (2004).
http://dx.doi.org/10.1021/nl0349810
13.
13. X. Lu, B. A. Korgel, and K. P. Johnston, Nanotechnology 16, S389 (2005).
http://dx.doi.org/10.1088/0957-4484/16/7/012
14.
14. E. J. Henderson, C. M. Hessel, and J. G. C. Veinot, J. Am. Chem. Soc. 130, 3624 (2008).
http://dx.doi.org/10.1021/ja710286a
15.
15. N. H. Chou, K. D. Oyler, N. E. Motl, and R. E. Schaak, Chem. Mater. 21, 4105 (2009).
http://dx.doi.org/10.1021/cm902088y
16.
16. D. D. Vaughn, J. F. Bondi, and R. E. Schaak, Chem. Mater. 22, 6103 (2010).
http://dx.doi.org/10.1021/cm1015965
17.
17. D. A. Ruddy, J. C. Johnson, E. R. Smith, and N. R. Neale, ACS Nano 4, 7459 (2010).
http://dx.doi.org/10.1021/nn102728u
18.
18. T. Sameshima, H. Watakabe, H. Kanno, T. Sadoh, and M. Miyao, Thin Solid Films 487, 67 (2005).
http://dx.doi.org/10.1016/j.tsf.2005.01.037
19.
19. C. Y. Ong, K. L. Pey, K. K. Ong, D. X. M. Tan, X. C. Wang, H. Y. Zheng, C. M. Ng, and L. Chan, Appl. Phys. Lett. 94, 082104 (2009).
http://dx.doi.org/10.1063/1.3086881
20.
20. M. Mulato, D. Toet, G. Aichmayr, P. V. Santos, and I. Chambouleyron, Appl. Phys. Lett. 70, 3570 (1997).
http://dx.doi.org/10.1063/1.119236
21.
21. M. Mulato, D. Toet, G. Aichmayr, A. Spangenberg, P. V. Santos, and I. Chambouleyron, J. Non. Cryst. Solids 227–230, 930 (1998).
http://dx.doi.org/10.1016/S0022-3093(98)00212-9
22.
22. O. Salihoglu, U. Kuüruüm, H. Gul Yaglioglu, A. Elmali, and A. Aydinli, J. Appl. Phys. 109, 123108 (2011).
http://dx.doi.org/10.1063/1.3601356
23.
23. K. Ohdaira and H. Matsumura, Thin Solid Films 524, 161 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.10.023
24.
24. K. Sakaike, S. Higashi, H. Murakami, and S. Miyazaki, Thin Solid Films 516, 3595 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.08.028
25.
25. H.-D. Geiler, E. Glaser, G. Goütz, and M. Wagner, J. Appl. Phys. 59, 3091 (1986).
http://dx.doi.org/10.1063/1.336910
26.
26. K. Ohdaira, T. Nishikawa, and H. Matsumura, J. Cryst. Growth 312, 2834 (2010).
http://dx.doi.org/10.1016/j.jcrysgro.2010.06.023
27.
27. D. Toet, P. M. Smith, T. W. Sigmon, T. Takehara, C. C. Tsai, W. R. Harshbarger, and M. O. Thompson, J. Appl. Phys. 85, 7914 (1999).
http://dx.doi.org/10.1063/1.370607
28.
28. Y. Miyata, M. Furuta, T. Yoshioka, and T. Kawamura, J. Appl. Phys. 73, 3271 (1993).
http://dx.doi.org/10.1063/1.352974
29.
29. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, Nano Lett. 5, 709 (2005).
http://dx.doi.org/10.1021/nl050127s
30.
30. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, J. Am. Chem. Soc. 128, 2115 (2006).
http://dx.doi.org/10.1021/ja057254a
31.
31. M. P. Melancon, W. Lu, Z. Yang, R. Zhang, Z. Cheng, A. M. Elliot, J. Stafford, T. Olson, J. Z. Zhang, and C. Li, Mol. Cancer Ther. 7, 1730 (2008).
http://dx.doi.org/10.1158/1535-7163.MCT-08-0016
32.
32. J. Z. Zhang, J. Phys. Chem. Lett. 1, 686 (2010).
http://dx.doi.org/10.1021/jz900366c
33.
33. W. Lu, C. Xiong, G. Zhang, Q. Huang, R. Zhang, J. Z. Zhang, and C. Li, Clin. Cancer Res. 15, 876 (2009).
http://dx.doi.org/10.1158/1078-0432.CCR-08-1480
34.
34. K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, and Z. Liu, Nano Lett. 10, 3318 (2010).
http://dx.doi.org/10.1021/nl100996u
35.
35. J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, J. Am. Chem. Soc. 133, 6825 (2011).
http://dx.doi.org/10.1021/ja2010175
36.
36. K. Yang, J. Wan, S. Zhang, B. Tian, Y. Zhang, and Z. Liu, Biomaterials 33, 2206 (2012).
http://dx.doi.org/10.1016/j.biomaterials.2011.11.064
37.
37. A. Karatutlu, M. Song, A. P. Wheeler, O. Ersoy, W. R. Little, Y. Zhang, P. Puech, F. S. Boi, Z. Luklinska, and A. V. Sapelkin, RSC Adv. 5, 20566 (2015).
http://dx.doi.org/10.1039/C5RA01529D
38.
38. Y.-J. Guo, F. Yang, L. Zhang, J. Pi, J.-Y. Cai, and P.-H. Yang, Chem. Asian J. 9, 2272 (2014).
http://dx.doi.org/10.1002/asia.201402227
39.
39.The volumes of 15 ml:15 ml:0.075 ml were used in the experiment for HF:H3PO4:H2O2, respectively. The optimum conditions were found out at the end of 115 trials of various amounts of the chemicals. The amount of H2O2 in the solution is particularly important since exceeding 0.075 ml of H2O2 may quickly cause the dissolution of all sample.
40.
40. Y. Zhang, A. Karatutlu, O. Ersoy, W. Little, G. Cibin, A. Dent, and A. Sapelkin, J. Synchrotron Radiat. 22, 105 (2015).
http://dx.doi.org/10.1107/S1600577514022486
41.
41. I. H. Campbell and P. M. Fauchet, Solid State Commun. 58, 739 (1986).
http://dx.doi.org/10.1016/0038-1098(86)90513-2
42.
42. H. Richter, Z. P. Wang, and L. Ley, Solid State Commun. 39, 625 (1981).
http://dx.doi.org/10.1016/0038-1098(81)90337-9
43.
43. A. K. Das, S. Ghose, B. Dev, G. Kuri, and T. Yang, Appl. Surf. Sci. 165, 260 (2000).
http://dx.doi.org/10.1016/S0169-4332(00)00357-3
44.
44. H. C. Choi and J. M. Buriak, Chem. Commun. 2000, 1669.
http://dx.doi.org/10.1039/b004011h
45.
45. J. M. Buriak, Chem. Rev. 102, 1271 (2002).
http://dx.doi.org/10.1021/cr000064s
46.
46. J. Sarathy, S. Shih, K. Jung, C. Tsai, K.-H. Li, D.-L. Kwong, J. C. Campbell, S.-L. Yau, and A. J. Bard, Appl. Phys. Lett. 60, 1532 (1992).
http://dx.doi.org/10.1063/1.107242
47.
47. A. J. Steckl, J. Xu, and H. C. Mogul, Appl. Phys. Lett. 62, 2111 (1993).
http://dx.doi.org/10.1063/1.109468
48.
48. X. Li and P. W. Bohn, Appl. Phys. Lett. 77, 2572 (2000).
http://dx.doi.org/10.1063/1.1319191
49.
49. A. Parbukov, V. Beklemyshev, V. Gontar, I. Makhonin, S. Gavrilov, and S. Bayliss, Mater. Sci. Eng. C 15, 121 (2001).
http://dx.doi.org/10.1016/S0928-4931(01)00258-2
50.
50. K. W. Kolasinski, Surf. Sci. 603, 1904 (2009).
http://dx.doi.org/10.1016/j.susc.2008.08.031
51.
51. H. Gerischer and W. Mindt, Electrochim. Acta 13, 1329 (1968).
http://dx.doi.org/10.1016/0013-4686(68)80060-X
52.
52. M. Sendova-Vassileva, N. Tzenov, D. Dimova-Malinovska, M. Rosenbauer, M. Stutzmann, and K. V. Josepovits, Thin Solid Films 255, 282 (1995).
http://dx.doi.org/10.1016/0040-6090(94)05673-21
53.
53. A. G. Cullis and L. T. Canham, Nature 353, 335 (1991).
http://dx.doi.org/10.1038/353335a0
54.
54. O. Warburg, Science 123, 309 (1956).
http://dx.doi.org/10.1126/science.123.3191.309
55.
55. D. Trachootham, J. Alexandre, and P. Huang, Nat. Rev. Drug Discov. 8, 579 (2009).
http://dx.doi.org/10.1038/nrd2803
56.
56. S. A. Levine and P. M. Kidd, J. Orthomol. Med. 1, 145 (1986).
57.
57. S. Goodman, Med. Hypotheses 26, 207 (1988).
http://dx.doi.org/10.1016/0306-9877(88)90101-6
58.
58. M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, and Y. Xia, Nat. Mater. 8, 935 (2009).
http://dx.doi.org/10.1038/nmat2564
59.
59.See supplementary material http://dx.doi.org/10.1063/1.4939066 for a TEM measurement of free-standing Ge nanoparticles, table of the values of the size of Ge nanoparticles found by the RFC model upon the exposure of a He-Ne laser light (laser power = 2mW), comparison of Raman shift from a reference bulk Ge powder and that from 40 min exposed Ge nanoparticles by the laser light (laser power = 2mW), Raman spectra of Ge nanoparticles exposed to a He-Ne laser light with an excitation wavelength of 633 nm (laser power = 2mW) from 40 min to 100 min, schematic of the growth of free-standing Ge nanoparticles upon exposure of a 2 mW He-Ne laser, schematic representation of energy states referring to crystalline and amorphous state of germanium and two videos (a) and (b) on the explosive crystallisation effect.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jap/118/24/10.1063/1.4939066
Loading
/content/aip/journal/jap/118/24/10.1063/1.4939066
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/118/24/10.1063/1.4939066
2015-12-29
2016-09-25

Abstract

In this study, with the aid of Raman measurements, we have observed transformations in small (∼3 nm and ∼10 nm) free-standing Genanoparticles under laser light exposure. The nanoparticles were obtained by the chemical stain etching of a monocrystalline Ge wafer and of Gepowder and by colloidal synthesis route. We found that the transformation path depends on laser power and exposure time. At relatively low values of the laser power (2 mW) over a period of 100 min, the Raman signal indicates transformation of the sample from a nanocrystaline to bulk-like state, followed by partial oxidation and finally a conversion of the entire sample into alpha-quartz type GeO. However, when the laser power is set at 60 mW, we observed a heat release during an explosive crystallization of the nanocrystalline material into bulk Ge without noticeable signs of oxidation. Together with the transmission electron microscopy measurements, these results suggest that the chemical stain etching method for the preparation of porous Ge may not be a top-down process as has been widely considered, but a bottom up one. Systematic studies of the laser exposure on Genanoparticles prepared by colloidal synthesis results in the fact that the explosive crystallisation is common for H-terminated and partially disordered Genanoparticles regardless of its particle size. We suggest possible bio-medical applications for the observed phenomena.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/118/24/1.4939066.html;jsessionid=h-I5y3nbji5N3lBsCAEso3WB.x-aip-live-06?itemId=/content/aip/journal/jap/118/24/10.1063/1.4939066&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/118/24/10.1063/1.4939066&pageURL=http://scitation.aip.org/content/aip/journal/jap/118/24/10.1063/1.4939066'
Right1,Right2,Right3,