Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/118/24/10.1063/1.4939067
1.
1. N. J. Ekins-Daukes, K. W. J. Barnham, J. P. Connolly, J. S. Roberts, J. C. Clark, G. Hill, and M. Mazzer, “ Strain-balanced GaAsP/InGaAs quantum well solar cells,” Appl. Phys. Lett. 75, 4195 (1999).
http://dx.doi.org/10.1063/1.125580
2.
2. M. Sugiyama, Y. Wang, H. Fujii, H. Sodabanlu, K. Watanabe, and Y. Nakano, “ A quantum-well superlattice solar cell for enhanced current output and minimized drop in open-circuit voltage under sunlight concentration,” J. Phys. D: Appl. Phys. 46, 024001 (2012).
http://dx.doi.org/10.1088/0022-3727/46/2/024001
3.
3. T. N. D. Tibbits, M. P. Lumb, and A. Dobbin, “ Quantum wells in multiple junction photovoltaics,” Proc. SPIE 7933, 793303 (2011).
http://dx.doi.org/10.1117/12.880599
4.
4. M. P. Lumb, A. L. Dobbin, D. B. Bushnell, K. H. Lee, T. N. D. Tibbits, A. W. Bett, R. D. McConnell, G. Sala, and F. Dimroth, “ Comparing the energy yield of (III–V) multi-junction cells with different numbers of sub-cells,” in 6th International Conference on Concentrating Photovoltaic Systems (CPV-6) (2010), Vol. 1277, p. 299.
5.
5. R. J. Walters, G. P. Summers, S. R. Messenger, A. Freundlich, C. Monier, and F. Newman, “ Radiation hard multi-quantum well InP/InAsP: Solar cells for space applications,” Prog. Photovoltaics: Res. Appl. 8, 349 (2000).
http://dx.doi.org/10.1002/1099-159X(200005/06)8:3<349::AID-PIP326>3.0.CO;2-Z
6.
6. R. J. Walters, G. P. Summers, S. R. Messenger, M. J. Romero, M. M. Al-Jassim, R. Garcia, D. Araujo, A. Freundlich, F. Newman, and M. F. Vilela, “ Electron beam induced current and cathodoluminescence study of proton irradiated InAsxP1-x/InP quantum-well solar cells,” J. Appl. Phys. 90, 2840 (2001).
http://dx.doi.org/10.1063/1.1389755
7.
7. R. Hoheisel, M. Gonzalez, M. P. Lumb, D. A. Scheiman, S. R. Messenger, C. G. Bailey, J. Lorentzen, T. N. D. Tibbits, M. Imaizumi, T. Ohshima, S. Sato, P. P. Jenkins, and R. J. Walters, “ Quantum-well solar cells for space: The impact of carrier removal on end-of-life device performance,” IEEE J. Photovoltaics 4, 253 (2014).
http://dx.doi.org/10.1109/JPHOTOV.2013.2289935
8.
8. C. G. Bailey, R. Hoheisel, M. Gonzalez, D. V. Forbes, M. P. Lumb, S. M. Hubbard, D. A. Scheiman, L. C. Hirst, K. Schmieder, S. Messenger, B. Weaver, C. D. Cress, J. Warner, M. K. Yakes, P. P. Jenkins, and R. J. Walters, “ Radiation effects on InAlGaAs/InGaAs quantum well solar cells,” in IEEE 40th Photovoltaic Specialists Conference (2014), p. 2871.
9.
9. S. I. Maximenko, M. P. Lumb, S. R. Messenger, R. Hoheisel, C. Affouda, D. Scheiman, M. Gonzalez, J. Lorentzen, P. P. Jenkins, and R. J. Walters, Proc. SPIE 8981, 89810U (2014).
http://dx.doi.org/10.1117/12.2040938
10.
10. S. I. Maximenko, J. A. Freitas, R. L. Myers-Ward, K.-K. Lew, B. L. VanMil, C. R. Eddy, D. K. Gaskill, P. G. Muzykov, and T. S. Sudarshan, “ Effect of threading screw and edge dislocations on transport properties of 4H–SiC homoepitaxial layers,” J. Appl. Phys. 108, 013708 (2010).
http://dx.doi.org/10.1063/1.3448230
11.
11. C. Claeys and E. Simeon, Radiation Effects in Advanced Semiconductor Materials and Devices ( Springer, New York, NY, USA, 2002).
12.
12. J. F. Ziegler, “ SRIM-2003,” Nucl. Instrum. Methods Phys. Res. B 219, 1027 (2004).
http://dx.doi.org/10.1016/j.nimb.2004.01.208
13.
13. M. Gonzalez, R. Hoheisel, M. P. Lumb, D. A. Scheiman, C. G. Bailey, J. Lorentzen, S. Maximenko, S. R. Messenger, P. P. Jenkins, T. N. D. Tibbits, M. Imaizumi, T. Ohshima, S. Sato, and R. J. Walters, “ Radiation study in quantum well III-V multi-junction solar cells,” in IEEE 39th Photovoltaic Specialists Conference (2013), p. 3233.
14.
14. D. D. Drouin, A. R. A. Couture, D. D. Joly, X. X. Tastet, V. V. Aimez, and R. R. Gauvin, “ CASINO V2.42: A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users,” Scanning 29, 92 (2007).
http://dx.doi.org/10.1002/sca.20000
15.
15. C. Donolato, “ On the theory of SEM charge-collection imaging of localized defects in semiconductors,” Optik 1, 19 (1978).
16.
16. H. Alexander, “ What information on extended defects do we obtain from beam-injection methods,” Mater. Sci. Eng. B 24, 1 (1994).
http://dx.doi.org/10.1016/0921-5107(94)90288-7
17.
17. S. M. Davidson, R. M. Innes, and S. M. Lindsay, “ Injection and doping dependence of SEM and scanning light spot diffusion length measurements in silicon power rectifiers,” Solid-State Electron. 25, 261 (1982).
http://dx.doi.org/10.1016/0038-1101(82)90134-4
18.
18. D. Cavalcoli and A. Cavallini, “ Evaluation of diffusion length at different excess carrier concentrations,” Mater. Sci. Eng. B 24, 98 (1994).
http://dx.doi.org/10.1016/0921-5107(94)90306-9
19.
19. O. Marcelot, S. I. Maximenko, and P. Magnan, “ Plan view and cross-sectional view EBIC measurements: Effect of e-beam injection conditions on extracted minority carrier transport properties,” IEEE Trans. Electron Devices 61, 2437 (2014).
http://dx.doi.org/10.1109/TED.2014.2323997
20.
20. J.-M. Bonard and J.-D. Ganière, “ Quantitative analysis of electron-beam-induced current profiles across p–n junctions in GaAs/Al0.4Ga0.6As heterostructures,” J. Appl. Phys. 79, 6987 (1996).
http://dx.doi.org/10.1063/1.361464
21.
21. S. I. Maximenko, S. R. Messenger, R. Hoheisel, D. Scheiman, M. Gonzalez, J. Lorentzen, P. Jenkins, and R. Walters, “ Characterization of high fluence irradiations on advanced triple-junction solar cells,” in IEEE 39th Photovoltaic Specialists Conference (2013), p. 2797.
22.
22. J. H. Warner, C. Inguimbert, M. E. Twigg, S. R. Messenger, R. J. Walters, M. J. Romero, and G. P. Summers, “ Effect of proton and silicon ion irradiation on defect formation in GaAs,” IEEE Trans. Nucl. Sci. 55, 3016 (2008).
http://dx.doi.org/10.1109/TNS.2008.2006266
23.
23. H. Y. Tada, J. R. Carter, B. E. Anspaugh, and R. G. Downing, The Solar Cell Radiation Handbook ( JPL Publication, 1982), p. 82.
24.
24. K. L. Luke, “ Determination of diffusion length in samples of diffusion-length size or smaller and with arbitrary top and back surface recombination velocities,” J. Appl. Phys. 90, 3413 (2001).
http://dx.doi.org/10.1063/1.1400093
25.
25. S. I. Maximenko and R. J. Walters, “ Minority carrier diffusion length measurements in solar cells by electron beam induced current,” paper presented in IEEE 42 Photovoltaic Specialists Conference (2015).
26.
26. J. I. Hanoka and R. O. Bell, “ Electron-beam-induced currents in semiconductors,” Annu. Rev. Mater. Sci. 11, 353 (1981).
http://dx.doi.org/10.1146/annurev.ms.11.080181.002033
27.
27. H. J. Leamy, “ Charge collection scanning electron microscopy,” J. Appl. Phys. 53, R51 (1982).
http://dx.doi.org/10.1063/1.331667
28.
28. M. P. Lumb, I. Vurgaftman, C. A. Affouda, J. R. Meyer, E. H. Aifer, and R. J. Walters, “ Quantum wells and superlattices for III-V photovoltaics and photodetectors,” Proc. SPIE 8471, 84710A (2012).
http://dx.doi.org/10.1117/12.964654
29.
29. G. P. Summers, E. A. Burke, P. Shapiro, S. R. Messenger, and R. J. Walters, “ Damage correlations in semiconductors exposed to gamma, electron and proton radiations,” IEEE Trans. Nucl. Sci. 40, 1372 (1993).
http://dx.doi.org/10.1109/23.273529
30.
30. J. W. Farmer and D. C. Look, “ Type conversion in electron-irradiated GaAs,” J. Appl. Phys. 50, 2970 (1979).
http://dx.doi.org/10.1063/1.326177
31.
31. D. C. Look and J. W. Farmer, “ The type-conversion phenomenon in electron-irradiated GaAs,” J. Phys. Chem. Solids 49, 97 (1988).
http://dx.doi.org/10.1016/0022-3697(88)90141-2
32.
32. V. A. Kozlov and V. V. Kozlovski, “ Doping of semiconductors using radiation defects produced by irradiation with protons and alpha particles,” Semiconductors 35, 735 (2001).
http://dx.doi.org/10.1134/1.1385708
33.
33. D. C. Look, “ The donor nature of the main electron traps in electron-irradiated n-type GaAs,” Solid State Commun. 64, 805 (1987).
http://dx.doi.org/10.1016/0038-1098(87)90705-8
34.
34. A. Khan, M. Yamaguchi, J. C. Bourgoin, and T. Takamoto, “ Thermal annealing study of 1 MeV electron-irradiation-induced defects in n(+)p InGaP diodes and solar cells,” J. Appl. Phys. 91, 2391 (2002).
http://dx.doi.org/10.1063/1.1433936
35.
35. D. Zuo, P. Qiao, D. Wasserman, and S. Lien Chuang, “ Direct observation of minority carrier lifetime improvement in InAs/GaSb type-II superlattice photodiodes via interfacial layer control,” Appl. Phys. Lett. 102, 141107 (2013).
http://dx.doi.org/10.1063/1.4801764
36.
36. M. Hastenrath and E. Kubalek, “ Time-resolved cathodoluminescence in scanning electron-microscopy,” Scanning Electron Microsc. 1, 157 (1982).
37.
37. H. S. Nalwa, Handbook of Surfaces and Interfaces of Materials: Surface and Interface Phenomena ( Academic Press, 2001).
38.
38. C. M. Parish and P. E. Russell, “ On the use of Monte Carlo modeling in the mathematical analysis of scanning electron microscopy-electron beam induced current data,” Appl. Phys. Lett. 89, 192108 (2006).
http://dx.doi.org/10.1063/1.2385212
39.
39. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “ Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815 (2001).
http://dx.doi.org/10.1063/1.1368156
http://aip.metastore.ingenta.com/content/aip/journal/jap/118/24/10.1063/1.4939067
Loading
/content/aip/journal/jap/118/24/10.1063/1.4939067
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/118/24/10.1063/1.4939067
2015-12-30
2016-12-10

Abstract

Solar cells utilizing multi-quantum well (MQW) structures are considered promising candidate materials for space applications. An open question is how well these structures can resist the impact of particle irradiation. The aim of this work is to provide feedback about the radiation response of InGaAs solar cells grown on Ge with MQWs incorporated within the i-region of the device. In particular, the local electronic transport properties of the MQW i-regions of solar cells subjected to electron and protonirradiation were evaluated experimentally using the electron beam induced current (EBIC) technique. The change in carrier collection distribution across the MQW i-region was analyzed using a 2D EBIC diffusionmodel in conjunction with numerical modeling of the electrical field distribution. Both experimental and simulated findings show carrier removal and type conversion from n- to p-type in MQW i-region at a displacement damage dose as low as ∼6.06–9.88 × 109 MeV/g. This leads to a redistribution of the electric field and significant degradation in charge carrier collection.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/118/24/1.4939067.html;jsessionid=ApD4vLRKEPn4Bt25cxyPux-v.x-aip-live-06?itemId=/content/aip/journal/jap/118/24/10.1063/1.4939067&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/118/24/10.1063/1.4939067&pageURL=http://scitation.aip.org/content/aip/journal/jap/118/24/10.1063/1.4939067'
Right1,Right2,Right3,