Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/118/4/10.1063/1.4926730
1.
1. S. Bedanta , T. Eimüller , W. Kleemann , J. Rhensius , F. Stromberg , E. Amaladass , S. Cardoso , and P. P. Freitas , Phys. Rev. Lett. 98, 176601 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.176601
2.
2. B. D. Terris and T. Thomson , J. Phys. D: Appl. Phys. 38, R199 (2005).
http://dx.doi.org/10.1088/0022-3727/38/12/R01
3.
3. H. Zeng , J. Li , J. P. Liu , Z. L. Wang , and S. Sun , Nature 420, 395 (2002).
http://dx.doi.org/10.1038/nature01208
4.
4. N. Jones , Nature 472, 22 (2011).
http://dx.doi.org/10.1038/472022a
5.
5. G. Hadjipanayis and A. Gabay , IEEE Spectrum 48, 3641 (2011).
http://dx.doi.org/10.1109/MSPEC.2011.5960165
6.
6. M. Klokkenburg , R. Dullens , W. Kegel , B. Erné , and A. Philipse , Phys. Rev. Lett. 96, 037203 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.037203
7.
7. K. Butter , P. H. H. Bomans , P. M. Frederik , G. J. Vroege , and A. P. Philipse , Nature Mater. 2, 88 (2003).
http://dx.doi.org/10.1038/nmat811
8.
8. J. R. Thomas , J. Appl. Phys. 37, 2914 (1966).
http://dx.doi.org/10.1063/1.1782154
9.
9. Z. Nie , A. Petukhova , and E. Kumacheva , Nat. Nanotechnol. 5, 15 (2010).
http://dx.doi.org/10.1038/nnano.2009.453
10.
10. J. Henzie , J. E. Barton , C. L. Stender , and T. W. Odom , Acc. Chem. Res. 39, 249 (2006).
http://dx.doi.org/10.1021/ar050013n
11.
11. J. Zhang , Y. Li , X. Zhang , and B. Yang , Adv. Mater. 22, 4249 (2010).
http://dx.doi.org/10.1002/adma.201000755
12.
12. S. Sun , S. Anders , H. F. Hamann , J. U. Thiele , J. E. E. Baglin , T. Thomson , E. E. Fullerton , C. B. Murray , and B. D. Terris , J. Am. Chem. Soc. 124, 2884 (2002).
http://dx.doi.org/10.1021/ja0176503
13.
13. E. Rabani , D. R. Reichman , P. L. Geissler , and L. E. Brus , Nature 426, 271 (2003).
http://dx.doi.org/10.1038/nature02087
14.
14. J. M. Luttinger and L. Tisza , Phys. Rev. 70, 954 (1946).
http://dx.doi.org/10.1103/PhysRev.70.954
15.
15. M. Scheinfein , K. Schmidt , K. Heim , and G. Hembree , Phys. Rev. Lett. 76, 1541 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.1541
16.
16. A. Sugawara and M. Scheinfein , Phys. Rev. B 56, R8499 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.R8499
17.
17. C. Djurberg , P. Svedlindh , P. Nordblad , M. Hansen , F. Bødker , and S. Mørup , Phys. Rev. Lett. 79, 5154 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.5154
18.
18. V. F. Puntes , P. Gorostiza , D. M. Aruguete , N. G. Bastus , and A. P. Alivisatos , Nature Mater. 3, 263 (2004).
http://dx.doi.org/10.1038/nmat1094
19.
19. J. Chen , A. Dong , J. Cai , X. Ye , Y. Kang , J. M. Kikkawa , and C. B. Murray , Nano Lett. 10, 5103 (2010).
http://dx.doi.org/10.1021/nl103568q
20.
20. E. Y. Vedmedenko , A. Ghazali , and J. C. S. Levy , Phys. Rev. B 59, 3329 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.3329
21.
21. A. J. Bennett and J. M. Xu , Appl. Phys. Lett. 82, 2503 (2003).
http://dx.doi.org/10.1063/1.1566792
22.
22. E. Y. Vedmedenko , Phys. Status Solidi 244, 1133 (2007).
http://dx.doi.org/10.1002/pssb.200541449
23.
23. K. Yamamoto , S. A. Majetich , M. R. McCartney , M. Sachan , S. Yamamuro , and T. Hirayama , Appl. Phys. Lett. 93, 082502 (2008).
http://dx.doi.org/10.1063/1.2973675
24.
24. M. Varón , M. Beleggia , J. Jordanovic , J. Schiøtz , T. Kasama , V. F. Puntes , and C. Frandsen , “ Longitudinal domain wall formation in elongated assemblies of ferromagnetic nanoparticles,” (to be published).
25.
25. M. P. Allen and D. J. Tildesley , Computer Simulation of Liquids ( Clarendon Press, Oxford, 1987).
26.
26. H. J. C. Berendsen , J. P. M. Postma , W. F. van Gunsteren , A. DiNola , and J. R. Haak , J. Chem. Phys. 81, 3684 (1984).
http://dx.doi.org/10.1063/1.448118
27.
27. J.-J. Weis , J. Phys.: Condens. Matter 15, S1471 (2003).
http://dx.doi.org/10.1088/0953-8984/15/15/311
28.
28. G. Held , G. Grinstein , H. Doyle , S. Sun , and C. Murray , Phys. Rev. B 64, 012408 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.012408
29.
29. A. F. Gross , M. R. Diehl , K. C. Beverly , E. K. Richman , and S. H. Tolbert , J. Phys. Chem. B 107, 5475 (2003).
http://dx.doi.org/10.1021/jp034240n
30.
30. M. Varón , M. Beleggia , T. Kasama , R. J. Harrison , R. E. Dunin-Borkowski , V. F. Puntes , and C. Frandsen , Sci. Rep. 3, 1234 (2013).
http://dx.doi.org/10.1038/srep01234
31.
31. A. Hubert and R. Schäfer , Magnetic Domains: The Analysis of Magnetic Microstructures ( Springer, Berlin Heidelberg, 1998), p. 441.
32.
32. E. C. Stoner and E. P. Wohlfarth , Philos. Trans. R. Soc., A 240, 599 (1948).
http://dx.doi.org/10.1098/rsta.1948.0007
http://aip.metastore.ingenta.com/content/aip/journal/jap/118/4/10.1063/1.4926730
Loading
/content/aip/journal/jap/118/4/10.1063/1.4926730
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/118/4/10.1063/1.4926730
2015-07-22
2016-12-11

Abstract

We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices. As the particles are small enough to consist of a single magnetic domain each, their magnetic interactions can be described by a spin model in which each particle is assigned a macroscopic “superspin.” Thus, the magnetic behaviour of these lattices may be compared to magnetic crystals with nanoparticle superspins taking the role of the atomic spins. The coupling is, however, different. The superspins interact only by dipolar interactions as exchange coupling between individual nanoparticles may be neglected due to interparticle spacing. We observe that it is energetically favorable to introduce domain walls oriented along the long dimension of nanoparticle assemblies rather than along the short dimension. This is unlike what is typically observed in continuous magnetic materials, where the exchange interaction introduces an energetic cost proportional to the area of the domain walls. Structural disorder, which will always be present in realistic assemblies, pins longitudinal domain walls when the external field is reversed, and makes a gradual reversal of the magnetization by migration of longitudinal domain walls possible, in agreement with previous experimental results.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/118/4/1.4926730.html;jsessionid=VZit_zUw1GNrNg3ErbdYxHWN.x-aip-live-03?itemId=/content/aip/journal/jap/118/4/10.1063/1.4926730&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/118/4/10.1063/1.4926730&pageURL=http://scitation.aip.org/content/aip/journal/jap/118/4/10.1063/1.4926730'
Right1,Right2,Right3,