Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/118/4/10.1063/1.4927215
1.
1. M. Vala, R. Robelek, M. Bockova, J. Wegener, and J. Homola, Biosens. Bioelectron. 40, 417 (2013).
http://dx.doi.org/10.1016/j.bios.2012.07.020
2.
2. A. Zilbershtein, M. Golosovsky, V. Lirtsman, B. Aroetib, and D. Davidov, Vib. Spectrosc. 61, 43 (2012).
http://dx.doi.org/10.1016/j.vibspec.2012.01.019
3.
3. V. Yashunsky, V. Lirtsman, A. Zilbershtein, A. Bein, B. Schwartz, B. Aroeti, M. Golosovsky, and D. Davidov, J. Biomed. Opt. 17, 081409 (2012).
http://dx.doi.org/10.1117/1.JBO.17.8.081409
4.
4. C. R. Keese, J. Wegener, S. R. Walker, and I. Giaever, Proc. Natl. Acad. Sci. U.S.A. 101, 1554 (2004).
http://dx.doi.org/10.1073/pnas.0307588100
5.
5. C. Yang, R. Mejard, H. J. Griesser, P. O. Bagnaninchi, and B. Thierry, Anal. Chem. 87, 1456 (2015).
http://dx.doi.org/10.1021/ac5031978
6.
6. S. Michaelis, R. Robelek, and J. Wegener, Adv. Biochem. Eng. Biotechnol. 126, 33 (2012).
http://dx.doi.org/10.1007/10_2011_112
7.
7. M. Tarantola, E. Sunnick, D. Schneider, A. Marel, A. Kunze, and A. Janshoff, Chem. Res. Toxicol. 24, 1494 (2011).
http://dx.doi.org/10.1021/tx200115q
8.
8. D. Axelrod, Methods Cell Biol. 89, 169 (2008).
http://dx.doi.org/10.1016/S0091-679X(08)00607-9
9.
9. Y. X. Wang, J. Y. J. Shyy, and S. Chien, Annu. Rev. Biomed. Eng. 10, 1 (2008).
http://dx.doi.org/10.1146/annurev.bioeng.010308.161731
10.
10. F. Tong, Y. Lian, H. Zhou, X. Shi, and F. He, Anal. Chem. 86, 10415 (2014).
http://dx.doi.org/10.1021/ac502926k
11.
11. T. Zhou, K. A. Marx, A. H. Dewilde, D. McIntosh, and S. J. Braunhut, Anal. Biochem. 421, 164 (2012).
http://dx.doi.org/10.1016/j.ab.2011.10.052
12.
12. E. A. Corbin, F. Kong, C. T. Lim, W. P. King, and R. Bashir, Lab Chip 15, 839 (2015).
http://dx.doi.org/10.1039/C4LC01179A
13.
13. P. O. Bagnaninchi and N. Drummond, PNAS 108, 6462 (2011).
http://dx.doi.org/10.1073/pnas.1018260108
14.
14. R. Yamaguchi, A. Hirano-Iwata, Y. Kimura, M. Niwano, K. Miyamoto, H. Isoda, and H. Miyazaki, J. Appl. Phys. 105, 024701 (2009).
http://dx.doi.org/10.1063/1.3068203
15.
15. R. Yamaguchi, A. Hirano-Iwata, Y. Aonuma, Y. Yoshimura, Y. Shinohara, Y. Kimura, and M. Niwano, Appl. Phys. Lett. 98, 133703 (2011).
http://dx.doi.org/10.1063/1.3571551
16.
16. Y. Mirsky, A. Nahor, E. Edrei, N. Massad-Ivanir, L. M. Bonanno, E. Segal, and A. Sa'ar, Appl. Phys. Lett. 103, 033702 (2013).
http://dx.doi.org/10.1063/1.4813740
17.
17. F. Zhang, S. Anderson, X. Zheng, E. Roberts, Y. Qiu, R. Liao, and X. Zhang, Appl. Phys. Lett. 105, 033702 (2014).
http://dx.doi.org/10.1063/1.4891187
18.
18. C. Roy Chaudhuri and D. Mondal, IEEE Trans. Dielectr. Electr. Insul. 20, 382 (2013).
http://dx.doi.org/10.1109/TDEI.2013.6508738
19.
19. D. Mondal and C. RoyChaudhuri, IEEE Trans. Nanobiosci. 12, 239 (2013).
http://dx.doi.org/10.1109/TNB.2013.2266375
20.
20. C. Y. Yang, L. Y. Huang, T. L. Shen, and J. A. Yeh, Eur. Cells Mater. 20, 415 (2010).
21.
21. A. V. Sapelkin, S. C. Bayliss, B. Unal, and A. Charalambou, Biomaterials 27, 842 (2006).
http://dx.doi.org/10.1016/j.biomaterials.2005.06.023
22.
22. Y. L. Khung, G. Barritt, and N. H. Voelcker, Exp. Cell Res. 314, 789 (2008).
http://dx.doi.org/10.1016/j.yexcr.2007.10.015
23.
23. T. Orita, M. Tomita, and K. Kato, Colloids Surf., B 84, 187 (2011).
http://dx.doi.org/10.1016/j.colsurfb.2010.12.032
24.
24. F. Gentile, R. Rocca, G. Marinaro, A. Nicastri, A. Toma, F. Paonessa, G. Cojoc, C. Liberale, F. Benfenati, E. Fabrizio, and P. Decuzzi, ACS Appl. Mater. Interfaces 4, 2903 (2012).
http://dx.doi.org/10.1021/am300519a
25.
25. V. Yashunsky, V. Lirtsman, M. Golosovsky, D. Davidov, and B. Aroeti, Biophys. J. 99, 4028 (2010).
http://dx.doi.org/10.1016/j.bpj.2010.10.017
26.
26. H. Ghosh and C. RoyChaudhuri, Appl. Phys. Lett. 102, 243701 (2013).
http://dx.doi.org/10.1063/1.4811409
27.
27. R. Das, N. Mondal, S. Das, and C. RoyChaudhuri, IEEE Sens. J. 12, 1868 (2012).
http://dx.doi.org/10.1109/JSEN.2011.2175724
28.
28. H. Ghosh and C. RoyChaudhuri, Biosens. Bioelectron. 67, 757 (2015).
http://dx.doi.org/10.1016/j.bios.2014.09.035
29.
29. D. Mazia, G. Schatten, and W. Sale, J. Cell Biol. 66, 198 (1975).
http://dx.doi.org/10.1083/jcb.66.1.198
30.
30. S. Amorim, A. Martins, N. M. Neves, R. L. Reis, and R. A. Pires, J. Mater. Chem. B 2, 6939 (2014).
http://dx.doi.org/10.1039/C4TB01071J
31.
31. J. Muller, C. Thirion, and M. W. Pfaffl, Biosens. Bioelectron. 26, 2000 (2011).
http://dx.doi.org/10.1016/j.bios.2010.08.075
32.
32. S. Arndt, J. Seebach, K. Psathaki, H. Galla, and J. Wegener, Biosens. Bioelectron. 19, 583 (2004).
http://dx.doi.org/10.1016/S0956-5663(03)00269-0
33.
33. R. Pradhan, L. Das, J. Chatterjee, M. Mandal, A. Mitra, and S. Das, Sens. Lett. 11, 466 (2013).
http://dx.doi.org/10.1166/sl.2013.2828
34.
34. B. Eker, R. Meissner, A. Bertsch, K. Mehta, and P. Renaud, Plos One 8, e57423 (2013).
http://dx.doi.org/10.1371/journal.pone.0057423
35.
35. K. A. Davis, K. A. Burke, P. T. Mather, and J. H. Henderson, Biomaterials 32, 2285 (2011).
http://dx.doi.org/10.1016/j.biomaterials.2010.12.006
36.
36.Fluent 6.3 User Manual, Fluent Inc.
37.
37. J. U. Brackbill, D. B. Kothe, and C. Zemach, J. Comput. Phys. 100, 335 (1992).
http://dx.doi.org/10.1016/0021-9991(92)90240-Y
38.
38. T. H. Wu, Y. W. Chiou, W. T. Chiu, M. J. Tang, C. H. Chen, and M. Yeh, Biomed. Microdevices 16, 465 (2014).
http://dx.doi.org/10.1007/s10544-014-9849-1
39.
39. I. Giaver and C. R. Keese, Proc. Natl. Acad. Sci. U.S.A. 88, 7896 (1991).
http://dx.doi.org/10.1073/pnas.88.17.7896
40.
40. E. Urdapilleta, M. Bellotti, and F. J. Bonetto, Phys. Rev. E 74, 041908 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.041908
41.
41. M. S. Cooper and R. E. Kelleer, Proc. Natl. Acad. Sci. U.S.A. 81, 160 (1984).
http://dx.doi.org/10.1073/pnas.81.1.160
42.
42. T. Goldberg, A. Barbul, N. Dov, and R. Korenstein, Biochim. Biophys. Acta 1833, 1396 (2013).
http://dx.doi.org/10.1016/j.bbamcr.2013.02.011
43.
43. I. Lackovic, R. Magjarevic, and D. Miklavcic, IEEE Trans. Dielectr. Electr. Insul. 16, 1338 (2009).
http://dx.doi.org/10.1109/TDEI.2009.5293947
44.
44. E. Neumann, M. Schaefer-Ridder, Y. Wang, and P. H. Hofschneider, EMBO J 1, 841 (1982).
45.
45. F. Asphahani, K. Wang, M. Thein, O. Veiseh, S. Yung, J. Xu, and M. Zhang, Phys. Biol. 8, 015006 (2011).
http://dx.doi.org/10.1088/1478-3975/8/1/015006
46.
46. J. Hong, K. Kandasamy, M. Marimuthu, C. S. Choi, and S. Kim, Analyst 136, 237 (2011).
http://dx.doi.org/10.1039/C0AN00560F
47.
47. J. Wegener, C. R. Keese, and I. Giaever, Exp. Cell Res. 259, 158 (2000).
http://dx.doi.org/10.1006/excr.2000.4919
48.
48. J. J. More, Lect. Notes Math. 630, 105 (1978).
http://dx.doi.org/10.1007/BFb0067700
49.
49. M. Ritter, F. Lang, G. Grubl, and H. G. Embacher, Pflugers Arch. 417, 29 (1990).
http://dx.doi.org/10.1007/BF00370765
50.
50. C. Korbmacher, A. S. Segal, G. Fejes-Toth, G. Giebisch, and E. L. Boulpaep, J. Gen. Physiol. 102, 761 (1993).
http://dx.doi.org/10.1085/jgp.102.4.761
51.
51. I. H. Heijink, P. M. Kies, H. F. Kauffman, D. S. Postma, A. J. M. van Oosterhout, and E. Vellenga, J. Immunol. 178, 7678 (2007).
http://dx.doi.org/10.4049/jimmunol.178.12.7678
52.
52. M. Ozawa, H. Baribault, and R. Kemler, EMBO J 8, 1711 (1989).
53.
53. I. H. Heijink, S. M. Brandenburg, J. A. Noordhoek, D. S. Postma, D-J. Slebos, and A. J. M. van Oosterhout, Eur. Respir. J. 35, 894 (2010).
http://dx.doi.org/10.1183/09031936.00065809
http://aip.metastore.ingenta.com/content/aip/journal/jap/118/4/10.1063/1.4927215
Loading
/content/aip/journal/jap/118/4/10.1063/1.4927215
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/118/4/10.1063/1.4927215
2015-07-23
2016-12-05

Abstract

Oxidized porous silicon (PS) is a common topographical biocompatible substrate that potentially provides a distinct environment for better understanding of behavior. But in the reported studies on oxidized PS, cell-cell and cell-substrate interactions have been detected only by fluorescent labeling. This paper is the first attempt to investigate real-time sensing of these interactions on HaCaT cells by label-free impedance spectroscopy on oxidized PS of two pore diameters (50 and 500 nm). One of the major requirements for successful impedance spectroscopy measurement is to restrict the channeling of electric field lines through the pores. To satisfy this criterion, we have designed the pore depths after analyzing the penetration of the medium by using computational fluid dynamics simulation. A distributed electrical model was also developed for estimating the various cellular attributes by considering a pseudorandom distribution of pores. It is observed from the impedance measurements and from the model that the proliferation rate increases for 50 nm pores but decreases for 500 nm pores compared to that for planar substrates. The rate of decrease in cell substrate separation () in the initial stage is more than the rate of increase in cell-cell junction resistance () corresponding to the initial adhesion phase of cells. It is observed that and are higher for 50 nm pores than those for planar substrates, corresponding to the fact that substrates more conducive toward cell adhesion encourage cell-cell interactions than direct cell-substrate interactions. Thus, the impedance spectroscopy coupled with the proposed theoretical framework for PS substrates can sense and quantify the cellular interactions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/118/4/1.4927215.html;jsessionid=C3pKhdvLuVXgH1SNSpeNAQxY.x-aip-live-02?itemId=/content/aip/journal/jap/118/4/10.1063/1.4927215&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/118/4/10.1063/1.4927215&pageURL=http://scitation.aip.org/content/aip/journal/jap/118/4/10.1063/1.4927215'
Right1,Right2,Right3,