Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. Vala, R. Robelek, M. Bockova, J. Wegener, and J. Homola, Biosens. Bioelectron. 40, 417 (2013).
2. A. Zilbershtein, M. Golosovsky, V. Lirtsman, B. Aroetib, and D. Davidov, Vib. Spectrosc. 61, 43 (2012).
3. V. Yashunsky, V. Lirtsman, A. Zilbershtein, A. Bein, B. Schwartz, B. Aroeti, M. Golosovsky, and D. Davidov, J. Biomed. Opt. 17, 081409 (2012).
4. C. R. Keese, J. Wegener, S. R. Walker, and I. Giaever, Proc. Natl. Acad. Sci. U.S.A. 101, 1554 (2004).
5. C. Yang, R. Mejard, H. J. Griesser, P. O. Bagnaninchi, and B. Thierry, Anal. Chem. 87, 1456 (2015).
6. S. Michaelis, R. Robelek, and J. Wegener, Adv. Biochem. Eng. Biotechnol. 126, 33 (2012).
7. M. Tarantola, E. Sunnick, D. Schneider, A. Marel, A. Kunze, and A. Janshoff, Chem. Res. Toxicol. 24, 1494 (2011).
8. D. Axelrod, Methods Cell Biol. 89, 169 (2008).
9. Y. X. Wang, J. Y. J. Shyy, and S. Chien, Annu. Rev. Biomed. Eng. 10, 1 (2008).
10. F. Tong, Y. Lian, H. Zhou, X. Shi, and F. He, Anal. Chem. 86, 10415 (2014).
11. T. Zhou, K. A. Marx, A. H. Dewilde, D. McIntosh, and S. J. Braunhut, Anal. Biochem. 421, 164 (2012).
12. E. A. Corbin, F. Kong, C. T. Lim, W. P. King, and R. Bashir, Lab Chip 15, 839 (2015).
13. P. O. Bagnaninchi and N. Drummond, PNAS 108, 6462 (2011).
14. R. Yamaguchi, A. Hirano-Iwata, Y. Kimura, M. Niwano, K. Miyamoto, H. Isoda, and H. Miyazaki, J. Appl. Phys. 105, 024701 (2009).
15. R. Yamaguchi, A. Hirano-Iwata, Y. Aonuma, Y. Yoshimura, Y. Shinohara, Y. Kimura, and M. Niwano, Appl. Phys. Lett. 98, 133703 (2011).
16. Y. Mirsky, A. Nahor, E. Edrei, N. Massad-Ivanir, L. M. Bonanno, E. Segal, and A. Sa'ar, Appl. Phys. Lett. 103, 033702 (2013).
17. F. Zhang, S. Anderson, X. Zheng, E. Roberts, Y. Qiu, R. Liao, and X. Zhang, Appl. Phys. Lett. 105, 033702 (2014).
18. C. Roy Chaudhuri and D. Mondal, IEEE Trans. Dielectr. Electr. Insul. 20, 382 (2013).
19. D. Mondal and C. RoyChaudhuri, IEEE Trans. Nanobiosci. 12, 239 (2013).
20. C. Y. Yang, L. Y. Huang, T. L. Shen, and J. A. Yeh, Eur. Cells Mater. 20, 415 (2010).
21. A. V. Sapelkin, S. C. Bayliss, B. Unal, and A. Charalambou, Biomaterials 27, 842 (2006).
22. Y. L. Khung, G. Barritt, and N. H. Voelcker, Exp. Cell Res. 314, 789 (2008).
23. T. Orita, M. Tomita, and K. Kato, Colloids Surf., B 84, 187 (2011).
24. F. Gentile, R. Rocca, G. Marinaro, A. Nicastri, A. Toma, F. Paonessa, G. Cojoc, C. Liberale, F. Benfenati, E. Fabrizio, and P. Decuzzi, ACS Appl. Mater. Interfaces 4, 2903 (2012).
25. V. Yashunsky, V. Lirtsman, M. Golosovsky, D. Davidov, and B. Aroeti, Biophys. J. 99, 4028 (2010).
26. H. Ghosh and C. RoyChaudhuri, Appl. Phys. Lett. 102, 243701 (2013).
27. R. Das, N. Mondal, S. Das, and C. RoyChaudhuri, IEEE Sens. J. 12, 1868 (2012).
28. H. Ghosh and C. RoyChaudhuri, Biosens. Bioelectron. 67, 757 (2015).
29. D. Mazia, G. Schatten, and W. Sale, J. Cell Biol. 66, 198 (1975).
30. S. Amorim, A. Martins, N. M. Neves, R. L. Reis, and R. A. Pires, J. Mater. Chem. B 2, 6939 (2014).
31. J. Muller, C. Thirion, and M. W. Pfaffl, Biosens. Bioelectron. 26, 2000 (2011).
32. S. Arndt, J. Seebach, K. Psathaki, H. Galla, and J. Wegener, Biosens. Bioelectron. 19, 583 (2004).
33. R. Pradhan, L. Das, J. Chatterjee, M. Mandal, A. Mitra, and S. Das, Sens. Lett. 11, 466 (2013).
34. B. Eker, R. Meissner, A. Bertsch, K. Mehta, and P. Renaud, Plos One 8, e57423 (2013).
35. K. A. Davis, K. A. Burke, P. T. Mather, and J. H. Henderson, Biomaterials 32, 2285 (2011).
36.Fluent 6.3 User Manual, Fluent Inc.
37. J. U. Brackbill, D. B. Kothe, and C. Zemach, J. Comput. Phys. 100, 335 (1992).
38. T. H. Wu, Y. W. Chiou, W. T. Chiu, M. J. Tang, C. H. Chen, and M. Yeh, Biomed. Microdevices 16, 465 (2014).
39. I. Giaver and C. R. Keese, Proc. Natl. Acad. Sci. U.S.A. 88, 7896 (1991).
40. E. Urdapilleta, M. Bellotti, and F. J. Bonetto, Phys. Rev. E 74, 041908 (2006).
41. M. S. Cooper and R. E. Kelleer, Proc. Natl. Acad. Sci. U.S.A. 81, 160 (1984).
42. T. Goldberg, A. Barbul, N. Dov, and R. Korenstein, Biochim. Biophys. Acta 1833, 1396 (2013).
43. I. Lackovic, R. Magjarevic, and D. Miklavcic, IEEE Trans. Dielectr. Electr. Insul. 16, 1338 (2009).
44. E. Neumann, M. Schaefer-Ridder, Y. Wang, and P. H. Hofschneider, EMBO J 1, 841 (1982).
45. F. Asphahani, K. Wang, M. Thein, O. Veiseh, S. Yung, J. Xu, and M. Zhang, Phys. Biol. 8, 015006 (2011).
46. J. Hong, K. Kandasamy, M. Marimuthu, C. S. Choi, and S. Kim, Analyst 136, 237 (2011).
47. J. Wegener, C. R. Keese, and I. Giaever, Exp. Cell Res. 259, 158 (2000).
48. J. J. More, Lect. Notes Math. 630, 105 (1978).
49. M. Ritter, F. Lang, G. Grubl, and H. G. Embacher, Pflugers Arch. 417, 29 (1990).
50. C. Korbmacher, A. S. Segal, G. Fejes-Toth, G. Giebisch, and E. L. Boulpaep, J. Gen. Physiol. 102, 761 (1993).
51. I. H. Heijink, P. M. Kies, H. F. Kauffman, D. S. Postma, A. J. M. van Oosterhout, and E. Vellenga, J. Immunol. 178, 7678 (2007).
52. M. Ozawa, H. Baribault, and R. Kemler, EMBO J 8, 1711 (1989).
53. I. H. Heijink, S. M. Brandenburg, J. A. Noordhoek, D. S. Postma, D-J. Slebos, and A. J. M. van Oosterhout, Eur. Respir. J. 35, 894 (2010).

Data & Media loading...


Article metrics loading...



Oxidized porous silicon (PS) is a common topographical biocompatible substrate that potentially provides a distinct environment for better understanding of behavior. But in the reported studies on oxidized PS, cell-cell and cell-substrate interactions have been detected only by fluorescent labeling. This paper is the first attempt to investigate real-time sensing of these interactions on HaCaT cells by label-free impedance spectroscopy on oxidized PS of two pore diameters (50 and 500 nm). One of the major requirements for successful impedance spectroscopy measurement is to restrict the channeling of electric field lines through the pores. To satisfy this criterion, we have designed the pore depths after analyzing the penetration of the medium by using computational fluid dynamics simulation. A distributed electrical model was also developed for estimating the various cellular attributes by considering a pseudorandom distribution of pores. It is observed from the impedance measurements and from the model that the proliferation rate increases for 50 nm pores but decreases for 500 nm pores compared to that for planar substrates. The rate of decrease in cell substrate separation () in the initial stage is more than the rate of increase in cell-cell junction resistance () corresponding to the initial adhesion phase of cells. It is observed that and are higher for 50 nm pores than those for planar substrates, corresponding to the fact that substrates more conducive toward cell adhesion encourage cell-cell interactions than direct cell-substrate interactions. Thus, the impedance spectroscopy coupled with the proposed theoretical framework for PS substrates can sense and quantify the cellular interactions.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd