Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. M. Shaw, H. T. Nembach, T. J. Silva, S. E. Russek, R. Geiss, C. Jones, N. Clark, T. Leo, and D. J. Smith, Phys. Rev. B 80(18), 184419 (2009).
2. P. F. Carcia, J. Appl. Phys. 63(10), 5066 (1988).
3. T. R. Albrecht, D. Bedau, E. Dobisz, H. Gao, M. Grobis, O. Hellwig, D. Kercher, J. Lille, E. Marinero, K. Patel, R. Ruiz, M. E. Schabes, L. Wan, D. Weller, and T. W. Wu, IEEE Trans. Magn. 49(2), 773 (2013).
4. O. Hellwig, E. E. Marinero, D. Kercher, T. Hennen, A. McCallum, E. Dobisz, T. W. Wu, J. Lille, T. Hirano, R. Ruiz, M. K. Grobis, D. Weller, and T. R. Albrecht, J. Appl. Phys. 116(12), 123913 (2014).
5. J. Akerman, Science 308(5721), 508 (2005).
6. A. D. Kent, Nat. Mater. 9(9), 699 (2010).
7. T. N. A. Nguyen, Y. Fang, V. Fallahi, N. Benatmane, S. M. Mohseni, R. K. Dumas, and J. Akerman, Appl. Phys. Lett. 98(17), 172502 (2011).
8. J. Pommier, P. Meyer, G. Penissard, J. Ferre, P. Bruno, and D. Renard, Phys. Rev. Lett. 65(16), 2054 (1990).
9. S. Gadetsky, IEEE Trans. Magn. 31(6), 3361 (1995).
10. M. Mansuripur, J. Appl. Phys. 63(12), 5809 (1988).
11. T. Thomson, K. O'Grady, and G. Bayreuther, J. Phys. D: Appl. Phys. 30(11), 1577 (1997).
12. D. M. Donnet, V. G. Lewis, J. N. Chapman, K. Ogrady, and H. W. Vankesteren, J. Phys. D: Appl. Phys. 26(10), 1741 (1993).
13. M. Vopsaroiu, M. J. Thwaites, G. V. Fernandez, S. Lepadatu, and K. O'Grady, J. Optoelectron. Adv. Mater. 7(5), 2713 (2005).
14. C. W. Barton, T. J. A. Slater, R. M. Rowan-Robinson, S. J. Haigh, D. Atkinson, and T. Thomson, J. Appl. Phys. 116(20), 203903 (2014).
15. T. Hauet, O. Hellwig, S. H. Park, C. Beigne, E. Dobisz, B. D. Terris, and D. Ravelosona, Appl. Phys. Lett. 98(17), 172506 (2011).
16. U. Holzwarth and N. Gibson, Nat. Nanotechnol. 6(9), 534 (2011).
17. T. Thomson, B. Lengsfield, H. Do, and B. D. Terris, J. Appl. Phys. 103(7), 07F548 (2008).
18. J. E. Davies, O. Hellwig, E. E. Fullerton, G. Denbeaux, J. B. Kortright, and K. Liu, Phys. Rev. B 70(22), 224434 (2004).

Data & Media loading...


Article metrics loading...



We demonstrate high precision controllability of the magnetization reversal nucleation process in [Co/Pd] multilayer films consisting of two sets of bilayers with high and low perpendicular anisotropy, respectively. The anisotropy of the entire film is set by the degree of Co/Pd interfacial mixing during deposition which provides fine control of the anisotropy of an individual bilayer in the multilayer stack. The relative number of each type of bilayer is used to select the magnetisation reversal behavior such that changing one bilayer changes the properties of the entire multilayer through anisotropy averaging. A simple extension to the sputtering protocol would provide multilayer films with fully graded anisotropy, while maintaining a constant saturation magnetization opening new possibilities for the creation of highly engineered multilayer structures for spin torque devices and future magnetic recording media.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd