Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/118/6/10.1063/1.4928083
1.
1. O. G. Berg and M. K. Jain, Interfacial Enzyme Kinetics ( Wiley, London, 2002);
1. E. A. Dennis, J. Cao, Y.-H. Hsu, V. Magrioti, and G. Kokotos, Chem. Rev. 111, 6130 (2011).
http://dx.doi.org/10.1021/cr200085w
2.
2. S. Urdy, Biol. Rev. 87, 786 (2012);
http://dx.doi.org/10.1111/j.1469-185X.2012.00221.x
2. M. Takeichi, Nat. Rev. Mol. Cell Biol. 15, 397 (2014).
http://dx.doi.org/10.1038/nrm3802
3.
3. R. Jahn and D. Fasshauer, Nature 490, 201 (2012);
http://dx.doi.org/10.1038/nature11320
3. S. Y. Shvartsman and R. E. Baker, WIREs Dev. Biol. 1, 715 (2012).
http://dx.doi.org/10.1002/wdev.55
4.
4. J. Mercer, M. Schelhaas, and A. Helenius, Annu. Rev. Biochem. 79, 803 (2010);
http://dx.doi.org/10.1146/annurev-biochem-060208-104626
4. J. C. Tilton and R. W. Doms, Antiviral Res. 85, 91 (2010).
http://dx.doi.org/10.1016/j.antiviral.2009.07.022
5.
5. D. Lingwood and K. Simons, Science 327, 46 (2010);
http://dx.doi.org/10.1126/science.1174621
5. O. G. Mouritsen, Phys. Chem. Chem. Phys. 13, 19195 (2011).
http://dx.doi.org/10.1039/c1cp22484k
6.
6. B. Antonny, Annu. Rev. Biochem. 80, 101 (2011);
http://dx.doi.org/10.1146/annurev-biochem-052809-155121
6. T. Baumgart, B. R. Capraro, C. Zhu, and S. L. Das, Annu. Rev. Phys. Chem. 62, 483 (2011);
http://dx.doi.org/10.1146/annurev.physchem.012809.103450
6. J. A. Jackman, G. H. Zan, V. P. Zhdanov, and N.-J. Cho, J. Phys. Chem. B 117, 16117 (2013).
http://dx.doi.org/10.1021/jp409716p
7.
7. R. Lipowsky, Adv. Colloid Interface Sci. 208, 14 (2014);
http://dx.doi.org/10.1016/j.cis.2014.02.008
7. V. P. Zhdanov and F. Höök, Biophys. Chem. 170, 17 (2012).
http://dx.doi.org/10.1016/j.bpc.2012.06.004
8.
8. G. J. Hardy, R. Nayak, and S. Zauscher, Curr. Opin. Colloid Interface Sci. 18, 448 (2013);
http://dx.doi.org/10.1016/j.cocis.2013.06.004
8. T. G. Pomorski, T. Nylander, and M. Cardenas, Adv. Colloid Interface Sci. 205, 207 (2014).
http://dx.doi.org/10.1016/j.cis.2013.10.028
9.
9. J. A. Jackman and N.-J. Cho, Biointerphases 7, 18 (2012).
http://dx.doi.org/10.1007/s13758-011-0018-2
10.
10. S. R. Tabaei, J.-H. Choi, G. H. Zan, V. P. Zhdanov, and N.-J. Cho, Langmuir 30, 10363 (2014);
http://dx.doi.org/10.1021/la501534f
10. S. R. Tabaei, J. A. Jackman, S.-O. Kim, V. P. Zhdanov, and N.-J. Cho, Langmuir 31, 3125 (2015).
http://dx.doi.org/10.1021/la5048497
11.
11. B. O. Liedberg, C. Nylander, and I. Lundström, Sens. Actuators, A 4, 299 (1983);
http://dx.doi.org/10.1016/0250-6874(83)85036-7
11. I. Abdulhalim, M. Zourob, and A. Lakhtakia, Electromagnetics 28, 214 (2008).
http://dx.doi.org/10.1080/02726340801921650
12.
12. E. M. Larsson, M. E. Edvardsson, C. Langhammer, I. Zorić, and B. Kasemo, Rev. Sci. Instrum. 80, 125105 (2009).
http://dx.doi.org/10.1063/1.3265321
13.
13. D. L. M. Rupert, C. L. M. Eldh, S. Block, V. P. Zhdanov, J. O. Lotvall, M. Bally, and F. Höök, Anal. Chem. 86, 5929 (2014);
http://dx.doi.org/10.1021/ac500931f
13. E. Oh, J. A. Jackman, S. Yorulmaz, V. P. Zhdanov, H. Lee, and N.-J. Cho, Langmuir 31, 771 (2015).
http://dx.doi.org/10.1021/la504267g
14.
14. N. S. Hatzakis, V. K. Bhatia, J. Larsen, K. L. Madsen, P.-Y. Bolinger, A. H. Kunding, J. Castillo, U. Gether, P. Hedegar, and D. Stamou, Nat. Chem. Biol. 5, 835 (2009).
http://dx.doi.org/10.1038/nchembio.213
15.
15. A. H. Kunding, M. W. Mortensen, S. M. Christensen, and D. Stamou, Biophys. J. 95, 1176 (2008).
http://dx.doi.org/10.1529/biophysj.108.128819
16.
16. V. K. Bhatia, K. L. Madsen, P.-Y. Bolinger, A. Kunding, P. Hedegard, U. Gether, and D. Stamou, EMBO J. 28, 3303 (2009);
http://dx.doi.org/10.1038/emboj.2009.261
16. M. B. Jensen, V. K. Bhatia, C. C. Jao, J. E. Rasmussen, S. L. Pedersen, K. J. Jensen, R. Langen, and D. Stamou, J. Biol. Chem. 286, 42603 (2011);
http://dx.doi.org/10.1074/jbc.M111.271130
16. A. Tonnesen, S. M. Christensen, V. Tkach, and D. Stamou, Biophys. J. 106, 201 (2014).
http://dx.doi.org/10.1016/j.bpj.2013.11.023
17.
17. S. R. Tabaei, M. Rabe, V. P. Zhdanov, N.-J. Cho, and F. Höök, Nano Lett. 12, 5719 (2012).
http://dx.doi.org/10.1021/nl3029637
18.
18. S. Fujii, T. Matsuura, and T. Yomo, ACS Chem. Biol. 10, 1694 (2015).
http://dx.doi.org/10.1021/acschembio.5b00107
19.
19. N. S. Hatzakis, L. Wei, S. K. Jorgensen, A. H. Kunding, P.-Y. Bolinger, N. Ehrlich, I. Makarov, M. Skjot, A. Svendsen, P. Hedegard, and D. Stamou, J. Am. Chem. Soc. 134, 9296 (2012).
http://dx.doi.org/10.1021/ja3011429
20.
20. S. R. Tabaei, M. Rabe, H. Zetterberg, V. P. Zhdanov, and F. Höök, J. Am. Chem. Soc. 135, 14151 (2013).
http://dx.doi.org/10.1021/ja4046313
21.
21. M. Rabe, S. R. Tabaei, H. Zetterberg, V. P. Zhdanov, and F. Höök, Angew. Chem. Int. Ed. 54, 1022 (2015).
http://dx.doi.org/10.1002/anie.201409603
22.
22. B. Lohse, P.-Y. Bolinger, and D. Stamou, J. Am. Chem. Soc. 130, 14372 (2008);
http://dx.doi.org/10.1021/ja805030w
22. N. Ehrlich, A. L. Christensen, and D. Stamou, Anal. Chem. 83, 8169 (2011).
http://dx.doi.org/10.1021/ac2017234
23.
23. S. M. Christensen, M. W. Mortensen, and D. G. Stamou, Biophys. J. 100, 957 (2011);
http://dx.doi.org/10.1016/j.bpj.2010.12.3730
23. A. H. Kunding, M. W. Mortensen, S. M. Christensen, V. K. Bhatia, I. Makarov, R. Metzler, and D. Stamou, Biophys. J. 101, 2693 (2011).
http://dx.doi.org/10.1016/j.bpj.2011.09.059
24.
24. M. Bally, A. Gunnarsson, L. Svensson, G. Larson, V. P. Zhdanov, and F. Höök, Phys. Rev. Lett. 107, 188103 (2011);
http://dx.doi.org/10.1103/PhysRevLett.107.188103
24. A. Gunnarsson, A. Snijder, J. Hicks, J. Gunnarsson, F. Höök, and S. Geschwindner, Anal. Chem. 87, 4100 (2015).
http://dx.doi.org/10.1021/acs.analchem.5b00740
25.
25. D. Axelrod, T. P. Burghardt, and N. L. Thompson, Annu. Rev. Biophys. Bioeng. 13, 247 (1984).
http://dx.doi.org/10.1146/annurev.bb.13.060184.001335
26.
26. T. Wazawa and M. Ueda, Adv. Biochem. Eng. Biotechnol. 95, 77 (2005);
26. H. Schneckenburger, Curr. Opin. Biotechnol. 16, 13 (2005);
http://dx.doi.org/10.1016/j.copbio.2004.12.004
26. N. L. Thompson, X. Wang, and P. Navaratnarajah, J. Struct. Biol. 168, 95 (2009).
http://dx.doi.org/10.1016/j.jsb.2009.02.013
27.
27. S. M. Nie and R. N. Zare, Annu. Rev. Biophys. Biomol. Struct. 26, 567 (1997);
http://dx.doi.org/10.1146/annurev.biophys.26.1.567
27. X. Michalet, S. Weiss, and M. Jager, Chem. Rev. 106, 1785 (2006).
http://dx.doi.org/10.1021/cr0404343
28.
28. D. Zheng, L. Kaldaras, and H. P. Lu, Rev. Sci. Instrum. 83, 013110 (2012).
http://dx.doi.org/10.1063/1.3677334
29.
29. E. Boukobza, A. Sonnenfeld, and G. Haran, J. Phys. Chem. B 105, 12165 (2001);
http://dx.doi.org/10.1021/jp012016x
29. B. Okumus, T. J. Wilson, D. M. J. Lilley, and T. Ha, Biophys. J. 87, 2798 (2004).
http://dx.doi.org/10.1529/biophysj.104.045971
30.
30. V. Filipe, A. Hawe, and W. Jiskoot, Pharm. Res. 27, 796 (2010).
http://dx.doi.org/10.1007/s11095-010-0073-2
31.
31. J. Pencer and F. R. Hallett, Langmuir 19, 7488 (2003).
http://dx.doi.org/10.1021/la0345439
32.
32. J. Larsen, N. S. Hatzakis, and D. Stamou, J. Am. Chem. Soc. 133, 10685 (2011).
http://dx.doi.org/10.1021/ja203984j
33.
33. J. Y. Lee, S.-K. Kim, and S.-C. Hong, J. Korean Phys. Soc. 50, 1340 (2007).
http://dx.doi.org/10.3938/jkps.50.1340
34.
34. J. N. Greeson and R. M. Raphael, J. Biomed. Opt. 12, 021002 (2007).
http://dx.doi.org/10.1117/1.2717499
35.
35. C. Gell, M. Berndt, J. Enderlein, and S. Diez, J. Microsc. 234, 38 (2009).
http://dx.doi.org/10.1111/j.1365-2818.2009.03147.x
36.
36. J. Oreopoulos and C. M. Yip, Biophys. J. 96, 1970 (2009);
http://dx.doi.org/10.1016/j.bpj.2008.11.041
36. P. Ferrand, P. Gasecka, A. Kress, X. Wang, F.-Z. Bioud, J. Duboisset, and S. Brasselet, Biophys. J. 106, 2330 (2014);
http://dx.doi.org/10.1016/j.bpj.2014.04.011
36. Š. Timr, A. Bondar, L. Cwiklik, M. Štefl, M. Hof, M. Vazdar, J. Lazar, and P. Jungwirth, J. Phys. Chem. B 118, 855 (2014).
http://dx.doi.org/10.1021/jp4067026
37.
37. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids ( Oxford University Press, Oxford, 1959);
37. V. P. Zhdanov and B. Kasemo, Proteins: Struct., Funct., Genet. 30, 177 (1998).
http://dx.doi.org/10.1002/(SICI)1097-0134(19980201)30:2<>1.0.CO;2-E
38.
38. V. G. Levich, Physicochemical Hydrodynamics ( Prentice-Hall, New Jersey, 1962);
38. V. P. Zhdanov, C. A. Keller, K. Glasmästar, and B. Kasemo, J. Chem. Phys. 112, 900 (2000).
http://dx.doi.org/10.1063/1.480617
39.
39. J. A. Jackman, V. P. Zhdanov, and N.-J. Cho, Langmuir 30, 9494 (2014).
http://dx.doi.org/10.1021/la502431x
40.
40. C. Lohr, A. H. Kunding, V. K. Bhatia, and D. Stamou, Methods Enzymol. 465, 143 (2009).
http://dx.doi.org/10.1016/S0076-6879(09)65008-4
41.
41. S. R. Tabaeiab and N. J. Cho, Chem. Commun. 51, 10272 (2015).
http://dx.doi.org/10.1039/C5CC02769A
42.
42. F. Olson, C. A. Hunt, F. C. Szoka, W. J. Vail, and D. Papahadjopoulos, Biochim. Biophys. Acta, Biomembr. 557, 9 (1979).
http://dx.doi.org/10.1016/0005-2736(79)90085-3
43.
43. M. J. Hope, M. B. Bally, G. Webb, and P. R. Cullis, Biochim. Biophys. Acta, Biomembr. 812, 55 (1985);
http://dx.doi.org/10.1016/0005-2736(85)90521-8
43. M. Traikia, D. E. Warschawski, M. Recouvreur, J. Cartaud, and P. F. Devaux, Eur. Biophys. J. 29, 184 (2000);
http://dx.doi.org/10.1007/s002490000077
43. J. A. Jackman, Z. Zhao, V. P. Zhdanov, C. W. Frank, and N.-J. Cho, Langmuir 30, 2152 (2014).
http://dx.doi.org/10.1021/la404582n
44.
44. R. A. Dragovic, C. Gardiner, A. S. Brooks, D. S. Tannetta, D. J. P. Ferguson, P. Hole, C. W. G. Redman, A. L. Harris, P. J. Dobson, P. Harrison, and I. L. Sargent, Nanomed. Nanotechnol. Biol. Med. 7, 780 (2011).
http://dx.doi.org/10.1016/j.nano.2011.04.003
45.
45. S. M. Christensen, P.-Y. Bolinger, N. S. Hatzakis, M. W. Mortensen, and D. Stamou, Nat. Nanotechnol. 7, 51 (2012).
http://dx.doi.org/10.1038/nnano.2011.185
46.
46. D. Axelrod, Traffic 2, 764 (2001).
http://dx.doi.org/10.1034/j.1600-0854.2001.21104.x
47.
47. C. Billaudeau, S. Mailfert, T. Trombik, N. Bertaux, V. Rouger, Y. Hamon, H.-T. He, and D. Marguet, Methods Enzymol. 519, 277 (2013);
http://dx.doi.org/10.1016/B978-0-12-405539-1.00010-5
47. S. Rüttinger, Confocal Microscopy and Quantitative Single Molecule Techniques for Metrology in Molecular Medicine ( Technischen Universität, Berlin, 2006).
48.
48. V. K. Bhatia, N. S. Hatzakis, and D. Stamou, Semin. Cell Dev. Biol. 21, 381 (2010);
http://dx.doi.org/10.1016/j.semcdb.2009.12.004
48. S. M. Christensen and D. G. Stamou, Sensors 10, 11352 (2010);
http://dx.doi.org/10.3390/s101211352
48. K. L. Madsen, V. K. Bhatia, U. Gether, and D. Stamou, FEBS Lett. 584, 1848 (2010);
http://dx.doi.org/10.1016/j.febslet.2010.01.053
48. G. Drin and B. Antonny, FEBS Lett. 584, 1840 (2010);
http://dx.doi.org/10.1016/j.febslet.2009.10.022
48. C. Chen, S. Zhu, T. Huang, S. Wang, and X. Yan, Anal. Methods 5, 2150 (2013);
http://dx.doi.org/10.1039/c3ay40219c
48. L. A. Bagatolli and D. Needham, Chem. Phys. Lipids 181, 99 (2014);
http://dx.doi.org/10.1016/j.chemphyslip.2014.02.009
48. A. Czogalla, M. Grzybek, W. Jones, and U. Coskun, Biochim. Biophys. Acta 1841, 1049 (2014).
http://dx.doi.org/10.1016/j.bbalip.2013.12.012
49.
49. P. M. Bendix, M. S. Pedersen, and D. Stamou, Proc. Natl. Acad. Sci. U.S.A. 106, 12341 (2009);
http://dx.doi.org/10.1073/pnas.0903052106
49. E.-Y. Lee, D.-Y. Choi, D.-K. Kim, J.-W. Kim, J. O. Park, S. Kim, S.-H. Kim, D. M. Desiderio, Y.-K. Ki1, K.-P. Kim, and Y. S. Gho, Proteomics 9, 5425 (2009);
http://dx.doi.org/10.1002/pmic.200900338
49. R. Luo, V. L. Ha, R. Hayashi, and P. A. Randazzo, Cell. Signalling 21, 1169 (2009);
http://dx.doi.org/10.1016/j.cellsig.2009.03.006
49. F. Delport, A. Deres, J.-I. Hotta, J. Pollet, B. Verbruggen, B. Sels, J. Hofkens, and J. Lammertyn, Langmuir 26(3), 1594 (2010);
http://dx.doi.org/10.1021/la904702j
49. B. Liu, A. Mazouchi, and C. C. Gradinaru, J. Phys. Chem. B 114, 15191 (2010);
http://dx.doi.org/10.1021/jp104614d
49. P. M. Bendix and L. B. Oddershede, Nano Lett. 11, 5431 (2011);
http://dx.doi.org/10.1021/nl203200g
49. J. Bomholt, K. Moth-Poulsen, M. Harboe, A. O. Karlson, K. B. Qvist, T. Bjornholm, and D. G. Stamou, Langmuir 27, 866 (2011);
http://dx.doi.org/10.1021/la1035163
49. B. W. Neuman, G. Kiss, A. H. Kunding, D. Bhella, M. F. Baksh, S. Connelly, B. Droese, J. P. Klaus, S. Makino, S. G. Sawicki, S. G. Siddell, D. G. Stamou, I. A. Wilson, P. Kuhn, and M. J. Buchmeier, J. Struct. Biol. 174, 11 (2011);
http://dx.doi.org/10.1016/j.jsb.2010.11.021
49. I. Ammendrup-Johnsen, T. S. Thorsen, U. Gether, and K. L. Madsen, Biochemistry 51, 586 (2012);
http://dx.doi.org/10.1021/bi2014689
49. E. Elizondo, J. Larsen, N. S. Hatzakis, I. Cabrera, T. Bjornholm, J. Veciana, D. Stamou, and N. Ventosa, J. Am. Chem. Soc. 134, 1918 (2012);
http://dx.doi.org/10.1021/ja2086678
49. H. M. Piwonski, M. Goomanovsky, D. Bensimon, A. Horovitz, and G. Haran, Proc. Natl. Acad. Sci. U.S.A. 109, 8368 (2012);
http://dx.doi.org/10.1073/pnas.1116670109
49. A. L. Christensen, C. Lohr, S. M. Christensen, and D. Stamou, Lab Chip 13, 3613 (2013);
http://dx.doi.org/10.1039/c3lc50492a
49. O. Friaa, M. Furukawa, A. Shamas-Din, B. Leber, D. W. Andrews, and C. Fradin, ChemPhysChem 14, 2476 (2013);
http://dx.doi.org/10.1002/cphc.201201047
49. Y.-S. Kim, E.-J. Choi, W.-H. Lee, S.-J. Choi, T.-Y. Roh, J. Park, Y.-K. Jee, Z. Zhu, Y.-Y. Koh, Y. S. Gho, and Y.-K. Kim, Clin. Exp. Allergy 43, 443 (2013);
http://dx.doi.org/10.1111/cea.12085
49. J. C. Black, P. P. Cheney, T. Campbell, and M. K. Knowles, Soft Matter 10, 2016 (2014);
http://dx.doi.org/10.1039/C3SM52522H
49. S. Mathiasen, S. M. Christensen, J. J. Fung, S. G. F. Rasmussen, J. F. Fay, S. K. Jorgensen, S. Veshaguri, D. L. Farrens, M. Kiskowski, B. Kobilka, and D. Stamou, Nat. Methods 11, 931 (2014);
http://dx.doi.org/10.1038/nmeth.3062
49. R. Wyss, L. Grasso, C. Wolf, W. Grosse, D. Demurtas, and H. Vogel, Anal. Chem. 86, 7229 (2014).
http://dx.doi.org/10.1021/ac501801m
50.
50. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media ( Pergamon, Oxford, 1984).
51.
51. K. Akashi, H. Miyata, H. Itoh, and K. Kinosita, Biophys. J. 71, 3242 (1996);
http://dx.doi.org/10.1016/S0006-3495(96)79517-6
51. A. Sapper, B. Reiss, A. Janshoff, and J. Wegener, Langmuir 22, 676 (2006).
http://dx.doi.org/10.1021/la051344b
52.
52. V. Sokolova, A.-K. Ludwig, S. Hornung, O. Rotan, P. A. Horn, M. Epple, and B. Giebel, Colloids Surf., B 87, 146 (2011).
http://dx.doi.org/10.1016/j.colsurfb.2011.05.013
53.
53. S. S. Perry, X. Yan, F. T. Limpoco, S. Lee, M. Müller, and N. D. Spencer, ACS Appl. Mater. Interfaces 1, 1224 (2009).
http://dx.doi.org/10.1021/am900101m
54.
54. B. Pignataro, C. Steinem, H. J. Galla, H. Fuchs, and A. Janshoff, Biophys. J. 78, 487 (2000).
http://dx.doi.org/10.1016/S0006-3495(00)76611-2
55.
55. D. Clerc and W. Lukosz, Sens. Actuators, B 11, 461 (1993);
http://dx.doi.org/10.1016/0925-4005(93)85288-L
55. T. Drobek, N. D. Spencer, and M. Heuberger, Macromolecules 38, 5254 (2005);
http://dx.doi.org/10.1021/ma0504217
55. O. Garbuzenko, Y. Barenholz, and A. Priev, Chem. Phys. Lipids 135, 117 (2005);
http://dx.doi.org/10.1016/j.chemphyslip.2005.02.003
55. M. Heuberger, T. Drobek, and N. D. Spencer, Biophys. J. 88, 495 (2005);
http://dx.doi.org/10.1529/biophysj.104.045443
55. F. Xu, G. Zhen, M. Textor, and W. Knoll, Biointerphases 1, 73 (2006).
http://dx.doi.org/10.1116/1.2219109
56.
56. A. L. Mattheyses, J. Biomed. Opt. 11, 014006 (2006).
http://dx.doi.org/10.1117/1.2161018
http://aip.metastore.ingenta.com/content/aip/journal/jap/118/6/10.1063/1.4928083
Loading
/content/aip/journal/jap/118/6/10.1063/1.4928083
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/118/6/10.1063/1.4928083
2015-08-11
2016-12-07

Abstract

Lipid vesicles immobilized via molecular linkers at a solid support represent a convenient platform for basic and applied studies of biological processes occurring at lipid membranes. Using total internal reflection fluorescence microscopy (TIRFM), one can track such processes at the level of individual vesicles provided that they contain dyes. In such experiments, it is desirable to determine the size of each vesicle, which may be in the range from 50 to 1000 nm. Fortunately, TIRFM in combination with nanoparticle tracking analysis makes it possible to solve this problem as well. Herein, we present the formalism allowing one to interpret the TIRFM measurements of the latter category. The analysis is focused primarily on the case of unpolarized light. The specifics of the use of polarized light are also discussed. In addition, we show the expected difference in size distribution of suspended and immobilized vesicles under the assumption that the latter ones are deposited under diffusion-controlled conditions. In the experimental part of our work, we provide representative results, showing explicit advantages and some shortcomings of the use of TIRFM in the context under consideration, as well as how our refined formalism improves previously suggested approaches.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/118/6/1.4928083.html;jsessionid=9nGnBk86RA2fjM--9k9ttiP5.x-aip-live-03?itemId=/content/aip/journal/jap/118/6/10.1063/1.4928083&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/118/6/10.1063/1.4928083&pageURL=http://scitation.aip.org/content/aip/journal/jap/118/6/10.1063/1.4928083'
Right1,Right2,Right3,