Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, J. Phys. D: Appl. Phys. 36, R167 (2003).
2. Q. A. Pankhurst, N. T. K. Thanh, S. K. Jones, and J. Dobson, J. Phys. D: Appl. Phys. 42, 224001 (2009).
3. S. Dutz and R. Hergt, Nanotechnology 25, 452001 (2014).
4. W. F. Brown, Jr., Phys. Rev. 130, 1677 (1963).
5. P. Debye, Polar Molecules ( Chemical Catalog Company, New York, 1929).
6. J. Frenkel, The Kinetic Theory of Liquids ( Dover Publications, New York, 1955).
7. D. Soukup, S. Moise, E. Céspedes, J. Dobson, and N. D. Telling, ACS Nano 9(1), 231 (2015).
8. G. Kong, R. D. Braun, and M. W. Dewhirst, Cancer Res. 60, 4440 (2000).
9. R. Tackett, C. Sudakar, R. Naik, G. Lawes, C. Rablau, and P. P. Vaishnava, J. Magn. Magn. Mater. 320, 2755 (2008).
10. G. Glöckl, R. Hergt, M. Zeisberger, S. Dutz, S. Nagel, and W. Weitschies, J. Phys.: Condens. Matter 18, S2935 (2006).
11. P. C. Fannin, Y. P. Kalmykov, and S. W. Charles, J. Phys. D: Appl. Phys. 27, 194 (1994).
12. R. Kölitz, P. C. Fannin, and L. Trahms, J. Magn. Magn. Mater. 149, 42 (1995).
13. M. Babincová, D. Leszczynska, P. Sourivong, P. Cičmanec, and P. Babinec, J. Magn. Magn. Mater. 225, 109 (2001).
14. H. Nemala, J. S. Thakur, V. M. Naik, P. P. Vaishnava, G. Lawes, and R. Naik, J. Appl. Phys. 116(3), 034309 (2014).
15. R. E. Rosensweig, J. Magn. Magn. Mater. 252, 370 (2002).
16. Y. C. Chen, “ Review of thermal properties of snow, ice and sea ice,” U.S. Army Corps of Engineers Cold Regions Research and Engineering Laboratory Report 81-10 (1981).
17. G. F. Goya, T. S. Berquó, and F. C. Fonseca, J. Appl. Phys. 94, 3520 (2003).
18. D. Caruntu, G. Caruntu, and C. J. O'Connor, J. Phys. D: Appl. Phys. 40, 5801 (2007).
19. W. Wernsdorfer, E. Bonet Orozco, K. Hasselbach, A. Benoit, B. Barbara, N. Demoncy, and A. Loiseau, Phys. Rev. Lett. 78(9), 1791 (1997).
20. R. H. Kodama, A. E. Berkowitz, E. J. McNiff, Jr., and S. Froner, Phys. Rev. Lett. 77, 394 (1996).
21. J. L. Tholence, A. Benoit, A. Mauger, M. Escorne, and R. Triboulet, Solid State Commun. 49, 417 (1984).
22. M. S. Seehra, V. Singh, P. Dutta, S. Neeleshwar, Y. Y. Chen, C. L. Chen, and C. C. Chen, J. Phys. D: Appl. Phys. 43, 145002 (2010).
23. K. L. Pisane, E. C. Despeaux, and M. S. Seehra, J. Magn. Magn. Mater. 384, 148154 (2015).
24. R. J. Tackett, J. Thankur, N. Mosher, E. Abdelhamid, and P. P. Vaishnava, “ Determination of the magnetocrystalline anisotropy in a frozen ferrofluid using dynamic susceptibility and magnetic hyperthermia measurements” (unpublished).

Data & Media loading...


Article metrics loading...



We report a novel method of determining the average Néel relaxation time and its temperature dependence by calculating derivatives of the measured time dependence of temperature for a frozen ferrofluid exposed to an alternating magnetic field. The ferrofluid, composed of dextran-coated FeO nanoparticles (diameter 13.7 nm ± 4.7 nm), was synthesized via wet chemical precipitation and characterized by x-ray diffraction and transmission electron microscopy. An alternating magnetic field of constant amplitude ( kA/m) driven at frequencies of 171 kHz, 232 kHz, and 343 kHz was used to determine the temperature dependent magnetic energy absorption rate in the temperature range from 160 K to 210 K. We found that the specific absorption rate of the ferrofluid decreased monotonically with temperature over this range at the given frequencies. From these measured data, we determined the temperature dependence of the Néel relaxation time and estimate a room-temperature magnetocrystalline anisotropy constant of 40 kJ/m3, in agreement with previously published results.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd