Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/118/8/10.1063/1.4928468
1.
1. J. Hopwood, A. R. Hoskinson, and J. Gregório, Plasma Sources Sci. Technol. 23, 064002 (2014).
http://dx.doi.org/10.1088/0963-0252/23/6/064002
2.
2. A. R. Hoskinson, J. Gregório, S. Parsons, and J. Hopwood, J. Appl. Phys. 117, 163301 (2015).
http://dx.doi.org/10.1063/1.4919416
3.
3. V. P. T. Ku, B. M. Annaratone, and J. E. Allen, J. Appl. Phys. 84, 6536 (1998).
http://dx.doi.org/10.1063/1.369025
4.
4. V. P. T. Ku, B. M. Annaratone, and J. E. Allen, J. Appl. Phys. 84, 6546 (1998).
http://dx.doi.org/10.1063/1.369026
5.
5. B. M. Annaratone, V. P. T. Ku, and J. E. Allen, J. Appl. Phys. 77, 5455 (1995).
http://dx.doi.org/10.1063/1.359242
6.
6. M. A. Lieberman, A. J. Lichtenberg, E. Kawamura, T. Mussenbrock, and R. P. Brinkmann, Phys. Plasmas 15, 063505 (2008).
http://dx.doi.org/10.1063/1.2928847
7.
7. U. Czarnetzki, T. Mussenbrock, and R. P. Brinkmann, Phys. Plasmas 13, 123503 (2006).
http://dx.doi.org/10.1063/1.2397043
8.
8. T. Mussenbrock and R. P. Brinkmann, Appl. Phys. Lett. 88, 151503 (2006).
http://dx.doi.org/10.1063/1.2194824
9.
9. J. Xue, R. S. Urdahl, and J. E. Cooley, Appl. Phys. Lett. 100, 064102 (2012).
http://dx.doi.org/10.1063/1.3681146
10.
10. P. Chabert and N. Braithwaite, Physics of Radio-Frequency Plasmas ( Cambridge University Press, Cambridge, 2011), p. 354.
11.
11. D. D. Blackwell, D. N. Walker, and W. E. Amatucci, Rev. Sci. Instrum. 76, 023503 (2005).
http://dx.doi.org/10.1063/1.1847608
12.
12. O. Boudreault, S. Mattei, L. Stafford, J. Margot, M. Moisan, R. Khare, and V. M. Donnelly, Phys. Rev. E 86, 015402(R) (2012).
http://dx.doi.org/10.1103/PhysRevE.86.015402
13.
13. Y. M. Aliev, V. Y. Bychenkov, A. V. Maximov, and H. Schluter, Plasma Sources Sci. Technol. 1, 126 (1992).
http://dx.doi.org/10.1088/0963-0252/1/2/009
14.
14. Y. M. Aliev, A. V. Maximov, U. Kortshagen, H. Schlüter, and A. Shivarova, Phys. Rev. E 51, 6091 (1995).
http://dx.doi.org/10.1103/PhysRevE.51.6091
15.
15. L. L. Alves, S. Letout, and C. Boisse-Laporte, Phys. Rev. E 79, 016403 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.016403
16.
16. O. Sakai and K. Tachibana, Plasma Sources Sci. Technol. 21, 013001 (2012).
http://dx.doi.org/10.1088/0963-0252/21/1/013001
17.
17. J. Gregório, P. Leprince, C. Boisse-Laporte, and L. L. Alves, Plasma Sources Sci. Technol. 21, 015013 (2012).
http://dx.doi.org/10.1088/0963-0252/21/1/015013
18.
18. A. D. Richards, B. E. Thompson, and H. H. Sawin, Appl. Phys. Lett. 50, 492 (1987).
http://dx.doi.org/10.1063/1.98183
19.
19. A. Salabas, G. Gousset, and L. L. Alves, Plasma Sources Sci. Technol. 11, 448 (2002).
http://dx.doi.org/10.1088/0963-0252/11/4/312
20.
20. J.-P. Boeuf and L. C. Pitchford, Phys. Rev. E 51, 1376 (1995).
http://dx.doi.org/10.1103/PhysRevE.51.1376
21.
21. L. L. Alves, Plasma Sources Sci. Technol. 16, 557 (2007).
http://dx.doi.org/10.1088/0963-0252/16/3/015
22.
22. G. J. M. Hagelaar and L. C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005).
http://dx.doi.org/10.1088/0963-0252/14/4/011
23.
23. A. Yanguas-Gil, J. Cotrino, and L. L. Alves, J. Phys. D: Appl. Phys. 38, 1588 (2005).
http://dx.doi.org/10.1088/0022-3727/38/10/014
24.
24. S. Pancheshnyi, S. Biagi, M. Bordage, G. Hagelaar, W. Morgan, A. Phelps, and L. Pitchford, Chem. Phys. 398, 148 (2012).
http://dx.doi.org/10.1016/j.chemphys.2011.04.020
25.
25.LXCAT, see http://fr.lxcat.net for IST-Lisbon database (2014).
26.
26. R. F. Whitmer and G. F. Herrmann, Phys. Fluids 9, 768 (1966).
http://dx.doi.org/10.1063/1.1761743
27.
27. G. J. M. Hagelaar, G. Fubiani, and J.-P. Boeuf, Plasma Sources Sci. Technol. 20, 015001 (2011).
http://dx.doi.org/10.1088/0963-0252/20/1/015001
28.
28. G. J. M. Hagelaar and G. M. W. Kroesen, J. Comput. Phys. 159, 1 (2000).
http://dx.doi.org/10.1006/jcph.2000.6445
29.
29. J. P. Boeuf, Phys. Rev. A 36, 2782 (1987).
http://dx.doi.org/10.1103/PhysRevA.36.2782
30.
30. K. McKay, F. Iza, and M. G. Kong, Eur. Phys. J. D 60, 497 (2010).
http://dx.doi.org/10.1140/epjd/e2010-00191-7
31.
31. H. C. Kwon, I. H. Won, and J. K. Lee, Appl. Phys. Lett. 100, 183702 (2012).
http://dx.doi.org/10.1063/1.4711207
http://aip.metastore.ingenta.com/content/aip/journal/jap/118/8/10.1063/1.4928468
Loading
/content/aip/journal/jap/118/8/10.1063/1.4928468
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/118/8/10.1063/1.4928468
2015-08-31
2016-12-05

Abstract

We present a study of atmospheric-pressure microdischarges sustained over a wide range of continuous excitation frequencies. A fluid model is used to describe the spatial and temporal evolution of the plasma properties within a 200 m discharge gap. At 0.5 GHz, the behavior is similar to a typical rf collisional discharge. As frequency increases at constant power density, we observe a decrease in the discharge voltage from greater than 100 V to less than 10 V. A minimum of the voltage amplitude is attained when electron temporal inertia delays the discharge current to be in phase with the applied voltage. Above this frequency, the plasma develops resonant regions where the excitation frequency equals the local plasma frequency. In these volumes, the instantaneous quasi-neutrality is perturbed and intense internal currents emerge ensuring a low voltage operation range. This enhanced plasma heating mechanism vanishes when the excitation frequency is larger than the local plasma frequency everywhere in the plasma volume. For a typical peak electron density of m−3, this condition corresponds to THz. Beyond the plasma frequency, the discharge performs like a low loss dielectric and an increasingly large voltage is necessary to preserve a constant absorbed power.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/118/8/1.4928468.html;jsessionid=4xB49Nq-X6uJ8O_3mmugahoN.x-aip-live-02?itemId=/content/aip/journal/jap/118/8/10.1063/1.4928468&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/118/8/10.1063/1.4928468&pageURL=http://scitation.aip.org/content/aip/journal/jap/118/8/10.1063/1.4928468'
Right1,Right2,Right3,