Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/118/8/10.1063/1.4929644
1.
1. H. Richter, Z. Wang, and L. Ley, Solid State Commun. 39, 625629 (1981).
http://dx.doi.org/10.1016/0038-1098(81)90337-9
2.
2. T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano, Rev. Sci. Instrum. 78, 061301 (2007).
http://dx.doi.org/10.1063/1.2738946
3.
3. D. M. Rie, Phys. Rev. B 84, 064308 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.064308
4.
4. G. Faraci, S. Gibilisco, and A. R. Pennisi, Phys. Rev. B 80, 193410 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.193410
5.
5. S. Kouteva-Arguirova, Tz. Arguirov, D. Wolfframm, and J. Reif, J. Appl. Phys. 94, 49464949 (2003).
http://dx.doi.org/10.1063/1.1611282
6.
6. H. Scheel, S. Reich, A. C. Ferrari, M. Cantoro, A. Colli, and C. Thomsen, Appl. Phys. Lett. 88, 233114 (2006).
http://dx.doi.org/10.1063/1.2210292
7.
7. Z. Wang, J. E. Alaniz, W. Jang, J. E. Garay, and C. Dames, Nano Lett. 11, 22062213 (2011).
http://dx.doi.org/10.1021/nl1045395
8.
8. K. Adu, H. Gutierrez, U. Kim, and P. Eklund, Phys. Rev. B 73, 155333 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.155333
9.
9. R. Jalilian, G. U. Sumanasekera, H. Chandrasekharan, and M. Sunkara, Phys. Rev. B 74, 155421 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.155421
10.
10. X. Jiang, T. Herricks, and Y. Xia, Nano Lett. 2, 13331338 (2002).
http://dx.doi.org/10.1021/nl0257519
11.
11. F. Teng, W. Yao, Y. Zheng, Y. Ma, Y. Teng, T. Xu, S. Liang, and Y. Zhu, Sens. Actuators, B 134, 761 (2008).
http://dx.doi.org/10.1016/j.snb.2008.06.023
12.
12. F. Bayansal, S. Kahraman, G. Cankaya, H. A. Cetinkara, H. S. Guder, and H. M. Cakmak, J. Alloys Compd. 509, 20942098 (2010).
http://dx.doi.org/10.1016/j.jallcom.2010.10.146
13.
13. F. Marabelli, G. Parravicini, and F. Salghetti-Drioli, Phys. Rev. B 52, 14331436 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.1433
14.
14. S. Wang, C. Hsiao, S. Chang, K. Lam, K. Wen, S. Hung, S. Young, and B. Huang, Sens. Actuators, A 171, 207211 (2011).
http://dx.doi.org/10.1016/j.sna.2011.09.011
15.
15. D. Li, J. Hu, R. Wu, and J. G. Lu, Nanotechnology 21, 485502 (2010).
http://dx.doi.org/10.1088/0957-4484/21/48/485502
16.
16. J. Chen, N. Y. Huang, S. Z. Deng, J. C. She, N. S. Xu, W. Zhang, X. Wen, and S. Yang, Appl. Phys. Lett. 86, 151107 (2005).
http://dx.doi.org/10.1063/1.1901811
17.
17. M. H. Chou, S. B. Liu, C. Y. Huang, S. Y. Wu, and C. L. Cheng, Appl. Surf. Sci. 254, 75397543 (2008).
http://dx.doi.org/10.1016/j.apsusc.2007.12.065
18.
18. Y. L. Huang, M. H. Chou, S. Y. Wu, and C. L. Cheng, Jpn. J. Appl. Phys., Part 1 47, 703705 (2008).
http://dx.doi.org/10.1143/JJAP.47.703
19.
19. J. F. Xu, W. Ji, Z. X. Shen, W. S. Li, S. H. Tang, X. R. Ye, D. Z. Jia, and X. Q. Xin, J. Raman Spectrosc. 30, 413415 (1999).
http://dx.doi.org/10.1002/(SICI)1097-4555(199905)30:5<413::AID-JRS387>3.0.CO;2-N
20.
20. H. Fan, B. Zou, Y. Liu, and S. Xie, Nanotechnology 17, 1099 (2006).
http://dx.doi.org/10.1088/0957-4484/17/4/042
21.
21. A. Das, B. Venkataramana, D. Partheephan, A. K. Prasad, S. Dhara, and A. K. Tyagi, Physica E 54, 4044 (2013).
http://dx.doi.org/10.1016/j.physe.2013.06.007
22.
22. F. Emanuela, T. Marco, S. Tiziana, C. Daniela, M. Cosimo, and G. M. Rachele, Physica E 60, 5964 (2014).
http://dx.doi.org/10.1016/j.physe.2014.02.005
23.
23. W. Wang, Y. Zhuang, and L. Li, Mater. Lett. 62, 17241726 (2008).
http://dx.doi.org/10.1016/j.matlet.2007.09.086
24.
24. W. Wang, L. Wang, H. Shi, and Y. Liang, CrystEngComm 14, 59145922 (2012).
http://dx.doi.org/10.1039/c2ce25666e
25.
25. U. Kumar Gaur, A. Kumar, and G. D. Varma, CrystEngComm 16, 30053014 (2014).
http://dx.doi.org/10.1039/c3ce42552e
26.
26. C. L. Chen, Y. R. Ma, M. H. Chou, C. Y. Huang, V. Yeh, and S. Y. Wu, Nanotechnology 18, 245604 (2007).
http://dx.doi.org/10.1088/0957-4484/18/24/245604
27.
27. J. Chrzanowski and J. C. Irwin, Solid State Commun. 70, 1114 (1989).
http://dx.doi.org/10.1016/0038-1098(89)90457-2
28.
28. W. Reichardt, F. Gompf, M. Ain, and B. M. Wanklyn, Z. Phys. B: Condens. Matter 81, 1924 (1990).
http://dx.doi.org/10.1007/BF01454208
29.
29. S. Ravi, A. B. Kaiser, and C. W. Bumby, Mater. Sci. Forum 700, 7179 (2012).
http://dx.doi.org/10.4028/www.scientific.net/MSF.700.71
30.
30. E. Le Ru, E. Blackie, M. Meyer, and P. Etchegoin, J. Phys. Chem. C 111, 1379413803 (2007).
http://dx.doi.org/10.1021/jp0687908
31.
31. N. A. Mohemmed Shanid, M. Abdul Khadar, and V. G. Sathe, J. Raman Spectrosc. 42, 17691773 (2011).
http://dx.doi.org/10.1002/jrs.2945
32.
32. G. K. Wertheim, M. A. Butler, K. W. West, and D. N. E. Buchanan, Rev. Sci. Instrum. 45, 13691371 (1974).
http://dx.doi.org/10.1063/1.1686503
33.
33. P. G. Klemens, Phys. Rev. 148, 845848 (1966).
http://dx.doi.org/10.1103/PhysRev.148.845
34.
34. H. Tang and I. P. Herman, Phys. Rev. B 43, 22992304 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.2299
35.
35. M. Gu, Y. Zichou, L. Pan, Z. Sun, S. Wang, and C. Q. Sun, J. Appl. Phys. 102, 083524 (2007).
http://dx.doi.org/10.1063/1.2798941
36.
36. W. S. Li, Z. X. Shen, Z. C. Feng, and S. J. Chua, J. Appl. Phys. 87, 33323337 (2000).
http://dx.doi.org/10.1063/1.372344
37.
37. X. B. Chen, J. Huso, J. L. Morrison, L. Bergman, and A. P. Purdy, J. Appl. Phys. 98, 026106 (2005).
http://dx.doi.org/10.1063/1.1968425
38.
38. X. D. Pu, J. Chen, W. Z. Shen, H. Ogawa, and Q. X. Guo, J. Appl. Phys. 98, 033527 (2005).
http://dx.doi.org/10.1063/1.2006208
39.
39. J. Menendez and M. Cardona, Phys. Rev. B 29, 20512059 (1984).
http://dx.doi.org/10.1103/PhysRevB.29.2051
40.
40. M. Ohashi, A. Tashiro, G. Oomi, E. Maeda, and X. G. Zheng, Phys. Rev. B 73, 134421 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.134421
41.
41. W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation ( Springer-Verlag, 2003).
42.
42. O. Brafman and R. Manor, Phys. Rev. B 51, 69406946 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.6940
43.
43. S. Nakashima, S. Oima, A. Mitsuishi, T. Nishimura, T. Fukumoto, and Y. Akasaka, Solid State Commun. 40, 765768 (1981).
http://dx.doi.org/10.1016/0038-1098(81)90825-5
44.
44. M. N. Islam, A. Pradhan, and S. Kumar, J. Appl. Phys. 98, 024309 (2005).
http://dx.doi.org/10.1063/1.1980537
45.
45. P. Mishra and K. P. Jain, Phys. Rev. B 62, 1479014795 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.14790
46.
46. I. M. Tiginyanu, G. Irmer, J. Monecke, and H. L. Hartnagel, Phys. Rev. B 55, 67396742 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.6739
47.
47. H. W. Lo and A. Compaan, J. Appl. Phys. 51, 1565 (1980).
http://dx.doi.org/10.1063/1.327809
48.
48. G. D. Pazonis, H. Tang, P. Irving, and M. Herman, IEEE J. Quantum Electron. 25(5), 976988 (1989).
http://dx.doi.org/10.1109/3.27988
http://aip.metastore.ingenta.com/content/aip/journal/jap/118/8/10.1063/1.4929644
Loading
/content/aip/journal/jap/118/8/10.1063/1.4929644
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/118/8/10.1063/1.4929644
2015-08-28
2016-09-27

Abstract

Raman spectra obtained from a nanocrystalline CuO thin film are observed to exhibit significant variation in the peak position and peak line-shape as a function of spatial position within the film. We attribute this effect to variation in the degree of local heating beneath the focused spot of the Raman probe laser. To understand this, we have undertaken a detailed study of the temperature-dependence of the CuO Raman peak. We observe a linear relationship between line-width and peak position, which persists over a wide temperature range, and is characteristic of a Raman process in which the temperature-dependence is dominated by anharmonic 3-phonon decay. We provide an analytical description of the Raman line-shape as a function of temperature and use this model to interpret the degree of laser heating observed within our sample. Using this relationship, we identify that the local micro-morphology of the CuO sample under study can dramatically affect the temperature achieved due to laser heating. We find that spectra collected from the surface of “micro-bubbles” within the CuO film studied can reach temperatures of >1000 K beneath the focused spot of our low power (5 mW) probe laser.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/118/8/1.4929644.html;jsessionid=YD6bh2VKMfn9m1m300Vfwe40.x-aip-live-06?itemId=/content/aip/journal/jap/118/8/10.1063/1.4929644&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/118/8/10.1063/1.4929644&pageURL=http://scitation.aip.org/content/aip/journal/jap/118/8/10.1063/1.4929644'
Right1,Right2,Right3,