Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/118/9/10.1063/1.4929811
1.
1. S. R. Seshadri, “ Polarization properties of partially coherent Gaussian Schell-model electromagnetic beams,” J. Appl. Phys. 87, 40844093 (2000).
http://dx.doi.org/10.1063/1.373034
2.
2. S. R. Seshadri, “ Spatial coherence of azimuthally symmetric Gaussian electromagnetic beams,” J. Appl. Phys. 88, 69736980 (2000).
http://dx.doi.org/10.1063/1.1326472
3.
3. F. Wang, X. Liu, and Y. Cai, “ Propagation of partially coherent beam in turbulent atmosphere: A review,” Prog. Electromagn. Res. 150, 123143 (2015).
http://dx.doi.org/10.2528/PIER15010802
4.
4. S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, and O. Korotkova, “ Polarization-induced reduction in scintillation of optical beams propagating in simulated turbulent atmospheric channels,” Waves Random Complex Media 24, 452462 (2014).
http://dx.doi.org/10.1080/17455030.2014.944242
5.
5. M. Salem, O. Korotkova, A. Dogariu, and E. Wolf, “ Polarization changes in partially coherent electromagnetic beams propagating through turbulent atmosphere,” Waves Random Media 14, 513523 (2004).
http://dx.doi.org/10.1088/0959-7174/14/4/003
6.
6. Y. Cai, O. Korotkova, H. T. Eyyuboglu, and Y. Baykal, “ Active laser radar systems with stochastic electromagnetic beams in turbulent atmosphere,” Opt. Express 16, 1583415846 (2008).
http://dx.doi.org/10.1364/OE.16.015834
7.
7. S. Sahin, Z. Tong, and O. Korotkova, “ Sensing of semi-rough targets embedded in atmospheric turbulence by means of stochastic electromagnetic beams,” Opt. Commun. 283, 45124518 (2010).
http://dx.doi.org/10.1016/j.optcom.2010.04.076
8.
8. O. Korotkova and N. Farwell, “ Effect of oceanic turbulence on polarization of stochastic beams,” Opt. Commun. 284, 17401746 (2011).
http://dx.doi.org/10.1016/j.optcom.2010.12.024
9.
9. G. Gbur, “ Partially coherent beam propagation in atmospheric turbulence,” J. Opt. Soc. Am. A 31, 20382045 (2014).
http://dx.doi.org/10.1364/JOSAA.31.002038
10.
10. M. Yao, I. Toselli, and O. Korotkova, “ Propagation of electromagnetic stochastic beams in anisotropic turbulence,” Opt. Express 22, 3160831619 (2014).
http://dx.doi.org/10.1364/OE.22.031608
11.
11. M. W. Hyde, S. Basu, M. F. Spencer, S. J. Cusumano, and S. T. Fiorino, “ Physical optics solution for the scattering of a partially coherent wave from a statistically rough material surface,” Opt. Express 21, 68076825 (2013).
http://dx.doi.org/10.1364/OE.21.006807
12.
12. M. W. Hyde, A. E. Bogle, and M. J. Havrilla, “ Scattering of a partially coherent wave from a material circular cylinder,” Opt. Express 21, 3232732339 (2013).
http://dx.doi.org/10.1364/OE.21.032327
13.
13. M. W. Hyde IV, “ Physical optics solution for the scattering of a partially coherent wave from a circular cylinder,” Opt. Commun. 338, 233239 (2015).
http://dx.doi.org/10.1016/j.optcom.2014.10.052
14.
14. F. J. Torcal-Milla and L. M. Sanchez-Brea, “ Gaussian-Schell-model beams propagating through rough gratings,” J. Opt. Soc. Am. A 28, 308313 (2011).
http://dx.doi.org/10.1364/JOSAA.28.000308
15.
15. T. D. Visser, D. G. Fischer, and E. Wolf, “ Scattering of light from quasi-homogeneous sources by quasi-homogeneous media,” J. Opt. Soc. Am. A 23, 16311638 (2006).
http://dx.doi.org/10.1364/JOSAA.23.001631
16.
16. T. van Dijk, D. G. Fischer, T. D. Visser, and E. Wolf, “ Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere,” Phys. Rev. Lett. 104, 173902 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.173902
17.
17. D. G. Fischer, T. van Dijk, T. D. Visser, and E. Wolf, “ Coherence effects in Mie scattering,” J. Opt. Soc. Am. A 29, 7884 (2012).
http://dx.doi.org/10.1364/JOSAA.29.000078
18.
18. Z. Mei and O. Korotkova, “ Random light scattering by collections of ellipsoids,” Opt. Express 20, 2929629307 (2012).
http://dx.doi.org/10.1364/OE.20.029296
19.
19. Y. Zhang and D. Zhao, “ Scattering of multi-Gaussian Schell-model beams on a random medium,” Opt. Express 21, 2478124792 (2013).
http://dx.doi.org/10.1364/OE.21.024781
20.
20. J. Liu, L. Bi, P. Yang, and G. W. Kattawar, “ Scattering of partially coherent electromagnetic beams by water droplets and ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 134, 7484 (2014).
http://dx.doi.org/10.1016/j.jqsrt.2013.11.002
21.
21. Y. Zhang and D. Zhao, “ The coherence and polarization properties of electromagnetic rectangular Gaussian Schell-model sources scattered by a deterministic medium,” J. Opt. 16, 125709 (2014).
http://dx.doi.org/10.1088/2040-8978/16/12/125709
22.
22. Z. Mei and O. Korotkova, “ Random sources generating ring-shaped beams,” Opt. Lett. 38, 9193 (2013).
http://dx.doi.org/10.1364/OL.38.000091
23.
23. O. Korotkova, “ Random sources for rectangular far fields,” Opt. Lett. 39, 6467 (2014).
http://dx.doi.org/10.1364/OL.39.000064
24.
24. O. Korotkova and E. Shchepakina, “ Random sources for optical frames,” Opt. Express 22, 1062210633 (2014).
http://dx.doi.org/10.1364/OE.22.010622
25.
25. Y. Zhang and Y. Cai, “ Random source generating far field with elliptical flat-topped beam profile,” J. Opt. 16, 075704 (2014).
http://dx.doi.org/10.1088/2040-8978/16/7/075704
26.
26. D. Voelz, X. Xiao, and O. Korotkova, “ Numerical modeling of Schell-model beams with arbitrary far-field patterns,” Opt. Lett. 40, 352355 (2015).
http://dx.doi.org/10.1364/OL.40.000352
27.
27. M. W. Hyde IV, S. Basu, X. Xiao, and D. G. Voelz, “ Producing any desired far-field mean irradiance pattern using a partially coherent Schell-model source,” J. Opt. 17, 055607 (2015).
http://dx.doi.org/10.1088/2040-8978/17/5/055607
28.
28. Y. Chen, F. Wang, L. Liu, C. Zhao, Y. Cai, and O. Korotkova, “ Generation and propagation of a partially coherent vector beam with special correlation functions,” Phys. Rev. A 89, 013801 (2014).
http://dx.doi.org/10.1103/PhysRevA.89.013801
29.
29. Y. Chen, L. Liu, F. Wang, C. Zhao, and Y. Cai, “ Elliptical Laguerre-Gaussian correlated Schell-model beam,” Opt. Express 22, 1397513987 (2014).
http://dx.doi.org/10.1364/OE.22.013975
30.
30. F. Wang, C. Liang, Y. Yuan, and Y. Cai, “ Generalized multi-Gaussian correlated Schell-model beam: From theory to experiment,” Opt. Express 22, 2345623464 (2014).
http://dx.doi.org/10.1364/OE.22.023456
31.
31. M. Takeda, W. Wang, Z. Duan, and Y. Miyamoto, “ Coherence holography,” Opt. Express 13, 96299635 (2005).
http://dx.doi.org/10.1364/OPEX.13.009629
32.
32. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics ( Cambridge University, 1995).
33.
33. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light ( Cambridge University, 2007).
34.
34.Vectorial Optical Fields: Fundamentals and Applications, edited by Q. Zhan ( World Scientific, 2014).
35.
35. G. Gbur and T. D. Visser, “ The structure of partially coherent fields,” in Progress in Optics, edited by E. Wolf ( Elsevier, 2010), Vol. 55, Chap. 5, pp. 285341.
36.
36. O. Korotkova, Random Light Beams: Theory and Applications ( CRC, 2014).
37.
37. Y. Cai, Y. Chen, and F. Wang, “ Generation and propagation of partially coherent beams with nonconventional correlation functions: A review,” J. Opt. Soc. Am. A 31, 20832096 (2014).
http://dx.doi.org/10.1364/JOSAA.31.002083
38.
38. Y. Cai, “ Generation of various partially coherent beams and their propagation properties in turbulent atmosphere: A review,” Proc. SPIE 7924, 792402 (2011).
http://dx.doi.org/10.1117/12.878821
39.
39. S. Basu, M. W. Hyde, X. Xiao, D. G. Voelz, and O. Korotkova, “ Computational approaches for generating electromagnetic Gaussian Schell-model sources,” Opt. Express 22, 3169131707 (2014).
http://dx.doi.org/10.1364/OE.22.031691
40.
40. C. Liang, F. Wang, X. Liu, Y. Cai, and O. Korotkova, “ Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry,” Opt. Lett. 39, 769772 (2014).
http://dx.doi.org/10.1364/OL.39.000769
41.
41. A. S. Ostrovsky, G. Martínez-Niconoff, V. Arrizón, P. Martínez-Vara, M. A. Olvera-Santamaría, and C. Rickenstorff-Parrao, “ Modulation of coherence and polarization using liquid crystal spatial light modulators,” Opt. Express 17, 52575264 (2009).
http://dx.doi.org/10.1364/OE.17.005257
42.
42. A. S. Ostrovsky, M. A. Olvera, C. Rickenstorff, G. Martínez-Niconoff, and V. Arrizón, “ Generation of a secondary electromagnetic source with desired statistical properties,” Opt. Commun. 283, 44904493 (2010).
http://dx.doi.org/10.1016/j.optcom.2010.04.080
43.
43. A. S. Ostrovsky, G. Rodríguez-Zurita, C. Meneses-Fabián, M. A. Olvera-Santamaría, and C. Rickenstorff-Parrao, “ Experimental generating the partially coherent and partially polarized electromagnetic source,” Opt. Express 18, 1286412871 (2010).
http://dx.doi.org/10.1364/OE.18.012864
44.
44. Y. Chen, F. Wang, C. Zhao, and Y. Cai, “ Experimental demonstration of a Laguerre-Gaussian correlated Schell-model vortex beam,” Opt. Express 22, 58265838 (2014).
http://dx.doi.org/10.1364/OE.22.005826
45.
45. F. Wang, X. Liu, Y. Yuan, and Y. Cai, “ Experimental generation of partially coherent beams with different complex degrees of coherence,” Opt. Lett. 38, 18141816 (2013).
http://dx.doi.org/10.1364/OL.38.001814
46.
46. F. Wang, Y. Cai, Y. Dong, and O. Korotkova, “ Experimental generation of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 100, 051108 (2012).
http://dx.doi.org/10.1063/1.3681802
47.
47. F. Wang and Y. Cai, “ Experimental generation of a partially coherent flat-topped beam,” Opt. Lett. 33, 17951797 (2008).
http://dx.doi.org/10.1364/OL.33.001795
48.
48. T. Shirai and E. Wolf, “ Coherence and polarization of electromagnetic beams modulated by random phase screens and their changes on propagation in free space,” J. Opt. Soc. Am. A 21, 19071916 (2004).
http://dx.doi.org/10.1364/JOSAA.21.001907
49.
49. T. Shirai, O. Korotkova, and E. Wolf, “ A method of generating electromagnetic Gaussian Schell-model beams,” J. Opt. A: Pure Appl. Opt. 7, 232237 (2005).
http://dx.doi.org/10.1088/1464-4258/7/5/004
50.
50. M. Santarsiero, R. Borghi, and V. Ramírez-Sánchez, “ Synthesis of electromagnetic Schell-model sources,” J. Opt. Soc. Am. A 26, 14371443 (2009).
http://dx.doi.org/10.1364/JOSAA.26.001437
51.
51. G. Piquero, F. Gori, P. Romanini, M. Santarsiero, R. Borghi, and A. Mondello, “ Synthesis of partially polarized Gaussian Schell-model sources,” Opt. Commun. 208, 916 (2002).
http://dx.doi.org/10.1016/S0030-4018(02)01562-6
52.
52. J. W. Goodman, Statistical Optics ( Wiley, 1985).
53.
53. L. Zhu and J. Wang, “ Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators,” Sci. Rep. 4, 7441 (2014).
http://dx.doi.org/10.1038/srep07441
54.
54. A. Siemion, M. Sypek, J. Suszek, M. Makowski, A. Siemion, A. Kolodziejczyk, and Z. Jaroszewicz, “ Diffuserless holographic projection working on twin spatial light modulators,” Opt. Lett. 37, 50645066 (2012).
http://dx.doi.org/10.1364/OL.37.005064
55.
55. A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “ Full phase and amplitude control of holographic optical tweezers with high efficiency,” Opt. Express 16, 44794486 (2008).
http://dx.doi.org/10.1364/OE.16.004479
56.
56. A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “ Near-perfect hologram reconstruction with a spatial light modulator,” Opt. Express 16, 25972603 (2008).
http://dx.doi.org/10.1364/OE.16.002597
57.
57. D. G. Voelz and X. Xiao, “ Wave optics modeling and laboratory generation of ‘exotic’ partial coherent beams,” in Imaging and Applied Optics 2014 ( Optical Society of America, 2014), p. PW2E.2.
58.
58. X. Xiao, O. Korotkova, and D. G. Voelz, “ Laboratory implementation of partially coherent beams with super-Gaussian distribution,” Proc. SPIE 9224, 92240N (2014).
http://dx.doi.org/10.1117/12.2063148
59.
59. J. P. Kirk and A. L. Jones, “ Phase-only complex-valued spatial filter,” J. Opt. Soc. Am. 61, 10231028 (1971).
http://dx.doi.org/10.1364/JOSA.61.001023
60.
60. J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “ Vortex knots in light,” New J. Phys. 7, 55 (2005).
http://dx.doi.org/10.1088/1367-2630/7/1/055
61.
61. E. Bolduc, N. Bent, E. Santamato, E. Karimi, and R. W. Boyd, “ Exact solution to simultaneous intensity and phase encryption with a single phase-only hologram,” Opt. Lett. 38, 35463549 (2013).
http://dx.doi.org/10.1364/OL.38.003546
62.
62. J. C. Vaughan, T. Hornung, T. Feurer, and K. A. Nelson, “ Diffraction-based femtosecond pulse shaping with a two-dimensional spatial light modulator,” Opt. Lett. 30, 323325 (2005).
http://dx.doi.org/10.1364/OL.30.000323
63.
63. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “ Bessel function output from an optical correlator with a phase-only encoded inverse filter,” Appl. Opt. 38, 67096713 (1999).
http://dx.doi.org/10.1364/AO.38.006709
64.
64. Z. Yu, H. Chen, Z. Chen, J. Hao, and J. Ding, “ Simultaneous tailoring of complete polarization, amplitude and phase of vector beams,” Opt. Commun. 345, 135140 (2015).
http://dx.doi.org/10.1016/j.optcom.2015.02.008
65.
65. Z. Chen, T. Zeng, B. Qian, and J. Ding, “ Complete shaping of optical vector beams,” Opt. Express 23, 1770117710 (2015).
http://dx.doi.org/10.1364/OE.23.017701
66.
66. S. Ramo, J. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, 3rd ed. ( Wiley, 1994).
67.
67. P. Ufimtsev, Fundamentals of the Physical Theory of Diffraction ( IEEE, 2007).
68.
68. C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. ( Wiley, 2005).
69.
69.Boulder Nonlinear Systems, Inc., Spatial Light Modulators—XY Series (Retrieved November 16, 2013).
70.
70.Lumenera Corporation, Lu120, Lu125 1.3 Megapixel USB 2.0 Camera (Retrieved November 16, 2013).
71.
71. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. ( Roberts & Company, 2005).
72.
72. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications ( Roberts & Company, 2007).
http://aip.metastore.ingenta.com/content/aip/journal/jap/118/9/10.1063/1.4929811
Loading
/content/aip/journal/jap/118/9/10.1063/1.4929811
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/118/9/10.1063/1.4929811
2015-09-01
2016-09-30

Abstract

A technique is presented to produce any desired partially coherent Schell-model source using a single phase-only liquid-crystal spatial light modulator (SLM). Existing methods use SLMs in combination with amplitude filters to manipulate the phase and amplitude of an initially coherent source. The technique presented here controls both the phase and amplitude using a single SLM, thereby making the amplitude filters unnecessary. This simplifies the optical setup and significantly increases the utility and flexibility of the resulting system. The analytical development of the technique is presented and discussed. To validate the proposed approach, experimental results of three partially coherent Schell-model sources are presented and analyzed. A brief discussion of possible applications is provided in closing.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/118/9/1.4929811.html;jsessionid=PmEk17PAtB2mfj2kmvct-I-S.x-aip-live-03?itemId=/content/aip/journal/jap/118/9/10.1063/1.4929811&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/118/9/10.1063/1.4929811&pageURL=http://scitation.aip.org/content/aip/journal/jap/118/9/10.1063/1.4929811'
Right1,Right2,Right3,