Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/119/15/10.1063/1.4945772
1.
1. S. Chen, L. Zhu, M. Yoshita, T. Mochizuki, C. Kim, H. Akiyama, M. Imaizumi, and Y. Kanemitsu, Sci. Rep. 5, 7836 (2015).
http://dx.doi.org/10.1038/srep07836
2.
2. J. F. Geisz, M. A. Steiner, I. Garcia, R. M. France, W. E. McMahon, C. R. Osterwald, and D. Friedman, IEEE J. Photovoltaics 5, 1827 (2015).
http://dx.doi.org/10.1109/JPHOTOV.2015.2478072
3.
3. D. M. Tex, T. Ihara, H. Akiyama, M. Imaizumi, and Y. Kanemitsu, Appl. Phys. Lett. 106, 013905 (2015).
http://dx.doi.org/10.1063/1.4905474
4.
4. D. M. Tex, M. Imaizumi, and Y. Kanemitsu, Opt. Express 23, A1687 (2015).
http://dx.doi.org/10.1364/OE.23.0A1687
5.
5. O. D. Miller and E. Yablonovitch, “ Photon extraction: the key physics for approaching solar cell efficiency limits,” Proc. SPIE 8808, 880807 (2013).
http://dx.doi.org/10.1117/12.2024592
6.
6. O. D. Miller, E. Yablonovitch, and S. Kurtz, IEEE J. Photovoltaics 2, 303 (2012).
http://dx.doi.org/10.1109/JPHOTOV.2012.2198434
7.
7. L. Zhu, C. Kim, M. Yoshita, S. Chen, S. Sato, T. Mochizuki, H. Akiyama, and Y. Kanemitsu, Appl. Phys. Lett. 104, 031118 (2014).
http://dx.doi.org/10.1063/1.4861464
8.
8. P. Asbeck, J. Appl. Phys. 48, 820 (1977).
http://dx.doi.org/10.1063/1.323633
9.
9. M. A. Steiner, J. F. Geisz, I. Garcia, D. J. Friedman, A. Duda, W. J. Olavarria, M. Young, D. Kuciauskas, and S. R. Kurtz, IEEE J. Photovoltaics 3, 1437 (2013).
http://dx.doi.org/10.1109/JPHOTOV.2013.2278666
10.
10. R. K. Ahrenkiel, B. M. Keyes, and D. J. Dunlavy, J. Appl. Phys. 70, 225 (1991).
http://dx.doi.org/10.1063/1.350315
11.
11. E. Centurioni, Appl. Opt. 44, 7532 (2005).
http://dx.doi.org/10.1364/AO.44.007532
12.
12. W. Shockley and W. T. Read, Phys. Rev. 87, 835 (1952).
http://dx.doi.org/10.1103/PhysRev.87.835
13.
13. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, IEEE Trans. Electron Devices ED-31, 711 (1984).
http://dx.doi.org/10.1109/T-ED.1984.21594
14.
14.Si, Ge, C (Diamond), GaAs, GaP, GaSb, InAs, InP, InSb, edited by M. Levinshtein, S. Rumyantsev, and M. Shur ( World Scientific Publishing, Singapore, 1996), Vol. 1.
15.
15. G. B. Lush, H. F. MacMillan, B. M. Keyes, D. H. Levi, M. R. Melloch, R. K. Ahrenkiel, and M. S. Lunstrom, J. Appl. Phys. 72, 1436 (1992).
http://dx.doi.org/10.1063/1.351704
16.
16. T. Schmidt, A. Lischka, and W. Zulehner, Phys. Rev. B 45, 8989 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.8989
17.
17. I. Schnitzer, E. Yablonovitch, C. Caneau, and T. Gmitter, Appl. Phys. Lett. 62, 131 (1993).
http://dx.doi.org/10.1063/1.109348
18.
18. T. Kraus, O. Höhn, H. Hauser, and B. Bläsi, J. Appl. Phys. 115, 053103 (2014).
http://dx.doi.org/10.1063/1.4863775
19.
19. P. Würfel, Physics of Solar Cells - From Principles to New Concepts ( Wiley-VCH, Weinheim, Germany, 2005).
20.
20. A. W. Walker, O. Höhn, D. N. Micha, F. Dimroth, B. Bläsi, and A. W. Bett, IEEE J. Photovoltaics 5, 6802607 (2015).
http://dx.doi.org/10.1109/JPHOT.2015.2460119
21.
21. O. Höhn, T. Kraus, U. T. Schwarz, and B. Bläsi, “ Photonics for solar energy systems V,” Proc. SPIE 9140, 91400B (2014).
http://dx.doi.org/10.1117/12.2051322
22.
22. D. M. Whittaker and I. S. Culshaw, Phys. Rev. B 60, 2610 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.2610
23.
23. L. Li, J. Opt. Soc. Am. 13, 1024 (1996).
http://dx.doi.org/10.1364/JOSAA.13.001024
24.
24. A. W. Walker, O. Höhn, D. N. Micha, L. Wagner, H. Helmers, A. W. Bett, and F. Dimroth, J. Photonics Energy 5, 053087 (2015).
http://dx.doi.org/10.1117/1.JPE.5.053087
25.
25. M. Wilkins, C. E. Valdivia, M. Gabriel, D. Masson, S. Fafard, and K. Hinzer, J. Appl. Phys. 118, 143102 (2015).
http://dx.doi.org/10.1063/1.4932660
26.
26. H. C. J. Casey and F. Stern, J. Appl. Phys. 47, 631 (1976).
http://dx.doi.org/10.1063/1.322626
27.
27. M. P. Lumb, M. A. Steiner, J. F. Geisz, and R. J. Walters, J. Appl. Phys. 116, 194504 (2014).
http://dx.doi.org/10.1063/1.4902320
28.
28. R. Nagarajan, T. Kamiya, and A. Kurobe, IEEE J. Quantum Electron. 25, 1161 (1989).
http://dx.doi.org/10.1109/3.29242
29.
29.Ternary and Quaternary III-V Compounds, edited by M. Levinshtein, S. Rumyantsev, and M. Shur ( World Scientific Publishing, Singapore, 1999). Vol. 2.
30.
30. U. Strauss, W. W. Rühle, and K. Köhle, Appl. Phys. Lett. 62, 55 (1993).
http://dx.doi.org/10.1063/1.108817
http://aip.metastore.ingenta.com/content/aip/journal/jap/119/15/10.1063/1.4945772
Loading
/content/aip/journal/jap/119/15/10.1063/1.4945772
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/119/15/10.1063/1.4945772
2016-04-15
2016-12-09

Abstract

A power-dependent relative photoluminescence measurement method is developed for double-heterostructures composed of III-V semiconductors. Analyzing the data yields insight into the radiative efficiency of the absorbing layer as a function of laser intensity. Four GaAs samples of different thicknesses are characterized, and the measured data are corrected for dependencies of carrier concentration and photon recycling. This correction procedure is described and discussed in detail in order to determine the material's Shockley-Read-Hall lifetime as a function of excitation intensity. The procedure assumes 100% internal radiative efficiency under the highest injection conditions, and we show this leads to less than 0.5% uncertainty. The resulting GaAs material demonstrates a 5.7 ± 0.5 ns nonradiative lifetime across all samples of similar doping (2–3 × 1017 cm−3) for an injected excess carrier concentration below 4 × 1012 cm−3. This increases considerably up to longer than 1 s under high injection levels due to a trap saturation effect. The method is also shown to give insight into bulk and interface recombination.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/119/15/1.4945772.html;jsessionid=Iw1zFj1v64cqwBiOAaATfwXL.x-aip-live-02?itemId=/content/aip/journal/jap/119/15/10.1063/1.4945772&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/119/15/10.1063/1.4945772&pageURL=http://scitation.aip.org/content/aip/journal/jap/119/15/10.1063/1.4945772'
Right1,Right2,Right3,