Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. V. P. Krainov and M. B. Smirnov, Phys. Rep. 370, 237 (2002).
2. T. Nagashima, H. Hirayama, K. Shibuya, M. Hangyo, M. Hashida, S. Tokita, and S. Sakabe, Opt. Express 17, 89078912 (2009).
3. T. D. Donnelly, T. Ditmire, K. Neuman, M. D. Perry, and R. W. Falcone, Phys. Rev. Lett. 76, 2472 (1996).
4. C. Vozzi, M. Nisoli, J-P. Caumes, G. Sansone, S. Stagira, S. De Silvestri, M. Vecchiocattivi, D. Bassi, M. Pascolini, L. Poletto, P. Villoresi, and G. Tondello, Appl. Phys. Lett. 86, 111121 (2005).
5. A. G. York, H. M. Milchberg, J. P. Palastro, and T. M. Antonsen, Phys. Rev. Lett. 100, 195001 (2008).
6. T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, Nature 398, 489492 (1999).
7. B. D. Layer, A. York, T. M. Antonsen, S. Varma, Y.-H. Chen, Y. Leng, and H. M. Milchberg, Phys. Rev. Lett. 99, 035001 (2007).
8. E. A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I. P. Christov, A. Aquila, E. M. Gullikson, D. T. Attwood, M. M. Murnane, and H. C. Kapteyn, Science 302, 9598 (2003).
9. H. Ruf, C. Handschin, R. Cireasa, N. Thire, A. Ferre, S. Petit, D. Descamps, E. Mevel, E. Constant, V. Blanchet, B. Fabre, and Y. Mairesse, Phys. Rev. Lett. 110, 083902 (2013).
10. S. J. Yoon, A. J. Goers, G. A. Hine, J. D. Magill, J. A. Elle, Y.-H. Chen, and H. M. Milchberg, Opt. Express 21, 15878 (2013).
11. K. A. Streletzky, Y. Zvinevich, B. E. Wyslouzil, and R. Strey, J. Chem. Phys. 116, p. 4058 (2002).
12. S. Sinha, H. Laksmono, and B. E. Wyslouzil, Rev. Sci. Instrum. 79, 114101 (2008).
13. O. F. Hagena, Surf. Sci. 106, 101 (1981).
14. L. Huang and J. B. Young, Proc. R. Soc. London A 452, 1459 (1996).
15. O. F. Hagena, Rev. Sci. Instrum. 63, 2374 (1992).
16. K. Y. Kim, V. Kumarappan, and H. M. Milchberg, Appl. Phys. Lett. 83, 32103212 (2003).
17. K. C. Gupta, N. Jha, P. Deb, D. R. Mishra, and J. K. Fuloria, J. Appl. Phys. 118, 114308 (2015).
18. S. Jinno, Y. Fukuda, H. Sakaki, A. Yogo, M. Kanasaki, K. Kondo, A. Ya. Faenov, I. Yu. Skobelev, T. A. Pikuz, A. S. Boldarev, and V. A. Gasilov, App. Phys. Lett. 102, 164103 (2013).
19. D. G. Jang, Y. S. You, H. M. Milchberg, H. Suk, and K. Y. Kim, App. Phys. Lett. 105, 021906 (2014).
20. X. Gao, A. V. Arefiev, R. C. Korzekwa, X. Wang, B. Shim, and M. C. Downer, J. Appl. Phys. 114, 034903 (2013).
21. X. Gao, R. Korzekwa, X. Wang, B. Shim, A. V. Arefiev, and M. C. Downer, Conference on Lasers and Electro-Optics, CLEO, 6327169 (2012).
22. F. Dorchies, F. Blasco, T. Caillaud, J. Stevefelt, C. Stenz, A. S. Boldarev, and V. A. Gasilov, Phys. Rev. A 68, 023201 (2003).
23. A. S. Boldarev, V. A. Gasilov, A. Y. Faenov, Y. Fukuda, and K. Yamakawa, Rev. Sci. Instrum. 77, 083112083110 (2006).
24. F. B. Sprow and J. M. Prausnitz, Trans. Faraday Soc. 62, 10971104 (1966).
25. Ch. Tegeler, R. Span, and W. Wagner, J. Phys. Chem. Ref. Data 28, 779 (1999).
26. M. Hipp, J. Woisetschlager, P. Reiterer, and T. Neger, Measurement 36, 5366 (2004).
27. G. Chen, B. Kim, B. Ahn, and D. E. Kim, J. Appl. Phys. 5, 053507 (2009).
28. P. G. Hill, J. Fluid Mech. 25, 593 (1966).
29. R. Hagmeijer, Phys. Fluids 16, 176183 (2006).
30. R. Hagmeijer, R. H. A. IJzermans, and F. Put, Phys. Fluids 17, 056101 (2005).
31. V. I. Kalikmanov, Nucleation Theory ( Springer, Dordrecht, 2013), ISBN 9789048136421.
32. D. Kashchiev, Nucleation ( Butterworth-Heinemann, Oxford, 2000), ISBN 9780750646826.
33. R. S. R. Sidin, R. Hagmeijer, and U. Sachs, Phys. Fluids 21, 073303 (2009).
34. R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids ( McGraw-Hill International Editions, Singapore, 1988), ISBN0-07-100284-7.
35. R. B. Stewart and R. T. Jacobsen, J. Phys. Chem. Ref. Data 18, 639 (1989).

Data & Media loading...


Article metrics loading...



We determine the size of argon clusters generated with a planar nozzle, based on the optical measurements in conjunction with theoretical modelling. Using a quasi-one dimensional model for the moments of the cluster size distribution, we determine the influence of critical physical assumptions. These refer to the surface tension depending on the presence of thermal equilibrium, the mass density of clusters, and different methods to model the growth rate of the cluster radius. We show that, despite strong variation in the predicted cluster size, , the liquid mass ratio, , can be determined with high trustworthiness, because is predicted as being almost independent of the specific model assumptions. Exploiting this observation, we use the calculated value for to retrieve the cluster size from optical measurements, i.e., calibrated Rayleigh scattering and interferometry. Based on the measurements of the cluster size . the nozzle stagnation pressure, we provide a new power law for the prediction of the cluster size in experiments with higher values of the Hagena parameter . This range is of relevance for experiments on high-intensity laser matter interactions.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd