Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/119/16/10.1063/1.4947187
1.
1. V. P. Krainov and M. B. Smirnov, Phys. Rep. 370, 237 (2002).
http://dx.doi.org/10.1016/S0370-1573(02)00272-7
2.
2. T. Nagashima, H. Hirayama, K. Shibuya, M. Hangyo, M. Hashida, S. Tokita, and S. Sakabe, Opt. Express 17, 89078912 (2009).
http://dx.doi.org/10.1364/OE.17.008907
3.
3. T. D. Donnelly, T. Ditmire, K. Neuman, M. D. Perry, and R. W. Falcone, Phys. Rev. Lett. 76, 2472 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.2472
4.
4. C. Vozzi, M. Nisoli, J-P. Caumes, G. Sansone, S. Stagira, S. De Silvestri, M. Vecchiocattivi, D. Bassi, M. Pascolini, L. Poletto, P. Villoresi, and G. Tondello, Appl. Phys. Lett. 86, 111121 (2005).
http://dx.doi.org/10.1063/1.1888053
5.
5. A. G. York, H. M. Milchberg, J. P. Palastro, and T. M. Antonsen, Phys. Rev. Lett. 100, 195001 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.195001
6.
6. T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, Nature 398, 489492 (1999).
http://dx.doi.org/10.1038/19037
7.
7. B. D. Layer, A. York, T. M. Antonsen, S. Varma, Y.-H. Chen, Y. Leng, and H. M. Milchberg, Phys. Rev. Lett. 99, 035001 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.035001
8.
8. E. A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I. P. Christov, A. Aquila, E. M. Gullikson, D. T. Attwood, M. M. Murnane, and H. C. Kapteyn, Science 302, 9598 (2003).
http://dx.doi.org/10.1126/science.1088654
9.
9. H. Ruf, C. Handschin, R. Cireasa, N. Thire, A. Ferre, S. Petit, D. Descamps, E. Mevel, E. Constant, V. Blanchet, B. Fabre, and Y. Mairesse, Phys. Rev. Lett. 110, 083902 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.083902
10.
10. S. J. Yoon, A. J. Goers, G. A. Hine, J. D. Magill, J. A. Elle, Y.-H. Chen, and H. M. Milchberg, Opt. Express 21, 15878 (2013).
http://dx.doi.org/10.1364/OE.21.015878
11.
11. K. A. Streletzky, Y. Zvinevich, B. E. Wyslouzil, and R. Strey, J. Chem. Phys. 116, p. 4058 (2002).
http://dx.doi.org/10.1063/1.1446031
12.
12. S. Sinha, H. Laksmono, and B. E. Wyslouzil, Rev. Sci. Instrum. 79, 114101 (2008).
http://dx.doi.org/10.1063/1.3006002
13.
13. O. F. Hagena, Surf. Sci. 106, 101 (1981).
http://dx.doi.org/10.1016/0039-6028(81)90187-4
14.
14. L. Huang and J. B. Young, Proc. R. Soc. London A 452, 1459 (1996).
http://dx.doi.org/10.1098/rspa.1996.0074
15.
15. O. F. Hagena, Rev. Sci. Instrum. 63, 2374 (1992).
http://dx.doi.org/10.1063/1.1142933
16.
16. K. Y. Kim, V. Kumarappan, and H. M. Milchberg, Appl. Phys. Lett. 83, 32103212 (2003).
http://dx.doi.org/10.1063/1.1618017
17.
17. K. C. Gupta, N. Jha, P. Deb, D. R. Mishra, and J. K. Fuloria, J. Appl. Phys. 118, 114308 (2015).
http://dx.doi.org/10.1063/1.4931374
18.
18. S. Jinno, Y. Fukuda, H. Sakaki, A. Yogo, M. Kanasaki, K. Kondo, A. Ya. Faenov, I. Yu. Skobelev, T. A. Pikuz, A. S. Boldarev, and V. A. Gasilov, App. Phys. Lett. 102, 164103 (2013).
http://dx.doi.org/10.1063/1.4802915
19.
19. D. G. Jang, Y. S. You, H. M. Milchberg, H. Suk, and K. Y. Kim, App. Phys. Lett. 105, 021906 (2014).
http://dx.doi.org/10.1063/1.4890596
20.
20. X. Gao, A. V. Arefiev, R. C. Korzekwa, X. Wang, B. Shim, and M. C. Downer, J. Appl. Phys. 114, 034903 (2013).
http://dx.doi.org/10.1063/1.4815961
21.
21. X. Gao, R. Korzekwa, X. Wang, B. Shim, A. V. Arefiev, and M. C. Downer, Conference on Lasers and Electro-Optics, CLEO, 6327169 (2012).
22.
22. F. Dorchies, F. Blasco, T. Caillaud, J. Stevefelt, C. Stenz, A. S. Boldarev, and V. A. Gasilov, Phys. Rev. A 68, 023201 (2003).
http://dx.doi.org/10.1103/PhysRevA.68.023201
23.
23. A. S. Boldarev, V. A. Gasilov, A. Y. Faenov, Y. Fukuda, and K. Yamakawa, Rev. Sci. Instrum. 77, 083112083110 (2006).
http://dx.doi.org/10.1063/1.2336105
24.
24. F. B. Sprow and J. M. Prausnitz, Trans. Faraday Soc. 62, 10971104 (1966).
http://dx.doi.org/10.1039/tf9666201097
25.
25. Ch. Tegeler, R. Span, and W. Wagner, J. Phys. Chem. Ref. Data 28, 779 (1999).
http://dx.doi.org/10.1063/1.556037
26.
26. M. Hipp, J. Woisetschlager, P. Reiterer, and T. Neger, Measurement 36, 5366 (2004).
http://dx.doi.org/10.1016/j.measurement.2004.04.003
27.
27. G. Chen, B. Kim, B. Ahn, and D. E. Kim, J. Appl. Phys. 5, 053507 (2009).
http://dx.doi.org/10.1063/1.3204974
28.
28. P. G. Hill, J. Fluid Mech. 25, 593 (1966).
http://dx.doi.org/10.1017/S0022112066000284
29.
29. R. Hagmeijer, Phys. Fluids 16, 176183 (2006).
http://dx.doi.org/10.1063/1.1630052
30.
30. R. Hagmeijer, R. H. A. IJzermans, and F. Put, Phys. Fluids 17, 056101 (2005).
http://dx.doi.org/10.1063/1.1921147
31.
31. V. I. Kalikmanov, Nucleation Theory ( Springer, Dordrecht, 2013), ISBN 9789048136421.
32.
32. D. Kashchiev, Nucleation ( Butterworth-Heinemann, Oxford, 2000), ISBN 9780750646826.
33.
33. R. S. R. Sidin, R. Hagmeijer, and U. Sachs, Phys. Fluids 21, 073303 (2009).
http://dx.doi.org/10.1063/1.3180863
34.
34. R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids ( McGraw-Hill International Editions, Singapore, 1988), ISBN0-07-100284-7.
35.
35. R. B. Stewart and R. T. Jacobsen, J. Phys. Chem. Ref. Data 18, 639 (1989).
http://dx.doi.org/10.1063/1.555829
http://aip.metastore.ingenta.com/content/aip/journal/jap/119/16/10.1063/1.4947187
Loading
/content/aip/journal/jap/119/16/10.1063/1.4947187
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/119/16/10.1063/1.4947187
2016-04-22
2016-09-27

Abstract

We determine the size of argon clusters generated with a planar nozzle, based on the optical measurements in conjunction with theoretical modelling. Using a quasi-one dimensional model for the moments of the cluster size distribution, we determine the influence of critical physical assumptions. These refer to the surface tension depending on the presence of thermal equilibrium, the mass density of clusters, and different methods to model the growth rate of the cluster radius. We show that, despite strong variation in the predicted cluster size, , the liquid mass ratio, , can be determined with high trustworthiness, because is predicted as being almost independent of the specific model assumptions. Exploiting this observation, we use the calculated value for to retrieve the cluster size from optical measurements, i.e., calibrated Rayleigh scattering and interferometry. Based on the measurements of the cluster size . the nozzle stagnation pressure, we provide a new power law for the prediction of the cluster size in experiments with higher values of the Hagena parameter . This range is of relevance for experiments on high-intensity laser matter interactions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/119/16/1.4947187.html;jsessionid=ca42UG_k1GKuzj8c2zSRABf8.x-aip-live-06?itemId=/content/aip/journal/jap/119/16/10.1063/1.4947187&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/119/16/10.1063/1.4947187&pageURL=http://scitation.aip.org/content/aip/journal/jap/119/16/10.1063/1.4947187'
Right1,Right2,Right3,