Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/119/16/10.1063/1.4947455
1.
1. S. A. Chambers, Adv. Mater. 22, 219 (2010).
http://dx.doi.org/10.1002/adma.200901867
2.
2. S. B. Ogale, Adv. Mater. 22, 3125 (2010).
http://dx.doi.org/10.1002/adma.200903891
3.
3. M. Opel, J. Phys. D: Appl. Phys. 45, 033001 (2012).
http://dx.doi.org/10.1088/0022-3727/45/3/033001
4.
4. N. Jedrecy, H. J. von Bardeleben, Y. Zheng, and J.-L. Cantin, Phys. Rev. B 69, 041308(R) (2004).
http://dx.doi.org/10.1103/PhysRevB.69.041308
5.
5. P. Sati, R. Hayn, R. Kuzian, S. Régnier, S. Schäfer, A. Stepanov, C. Morhain, C. Deparis, M. Laügt, M. Goiran, and Z. Golacki, Phys. Rev. Lett. 96, 017203 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.017203
6.
6. A. Ney, M. Opel, T. C. Kaspar, V. Ney, S. Ye, K. Ollefs, T. Kammermeier, S. Bauer, K.-W. Nielsen, S. T. B. Goennenwein, M. H. Engelhard, S. Zhou, K. Potzger, J. Simon, W. Mader, S. M. Heald, J. C. Cezar, F. Wilhelm, A. Rogalev, R. Gross, and S. A. Chambers, New J. Phys. 12, 013020 (2010).
http://dx.doi.org/10.1088/1367-2630/12/1/013020
7.
7. P. Sati, C. Deparis, C. Morhain, S. Schäfer, and A. Stepanov, Phys. Rev. Lett. 98, 137204 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.137204
8.
8. A. Ney, V. Ney, F. Wilhelm, A. Rogalev, and K. Usadel, Phys. Rev. B 85, 245202 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.245202
9.
9. M. Opel, K.-W. Nielsen, S. Bauer, S. T. B. Goennenwein, J. C. Cezar, D. Schmeisser, J. Simon, W. Mader, and R. Gross, Eur. Phys. J. B 63, 437 (2008).
http://dx.doi.org/10.1140/epjb/e2008-00252-4
10.
10. N. Jedrecy, H. J. von Bardeleben, and D. Demaille, Phys. Rev. B 80, 205204 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.205204
11.
11. A. Ney, A. Kovács, V. Ney, S. Ye, K. Ollefs, T. Kammermeier, F. Wilhelm, A. Rogalev, and R. E. Dunin-Borkowski, New J. Phys. 13, 103001 (2011).
http://dx.doi.org/10.1088/1367-2630/13/10/103001
12.
12. S. R. Shinde, S. B. Ogale, J. S. Higgins, H. Zheng, A. J. Millis, V. N. Kulkarni, R. Ramesh, R. L. Greene, and T. Venkatesan, Phys. Rev. Lett. 92, 166601 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.166601
13.
13. S. Ye, V. Ney, T. Kammermeier, K. Ollefs, S. Zhou, H. Schmidt, F. Wilhelm, A. Rogalev, and A. Ney, Phys. Rev. B 80, 245321 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.245321
14.
14. M. Hamieh, N. Jedrecy, C. Hebert, D. Demaille, and J. Perriere, Phys. Rev. B 92, 155302 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.155302
15.
15. D. Y. Li, Y. J. Zeng, D. Batuk, L. M. C. Pereira, Z. Z. Ye, C. Fleischmann, M. Menghini, S. Nikitenko, J. Hadermann, K. Temst, A. Vantomme, M. J. Van Bael, J.-P. Locquet, and C. Van Haesendonck, ACS Appl. Mater. Interfaces 6, 4737 (2014).
http://dx.doi.org/10.1021/am4053877
16.
16. T. Nishizawa and K. Ishida, Bull. Alloy Phase Diagrams 5, 161 (1984).
http://dx.doi.org/10.1007/BF02868953
17.
17. J. R. Childress and C. L. Chien, Phys. Rev. B 43, 8089 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.8089
18.
18. S. Dhara, R. Roy Chowdhury, S. Lahiri, P. Ray, and B. Bandyopadhyay, J. Magn. Magn. Mater. 374, 647 (2015).
http://dx.doi.org/10.1016/j.jmmm.2014.09.030
19.
19. A. Rogalev, F. Wilhelm, J. Goulon, and G. Goujon, in Magnetism and Synchrotron Radiation: Towards the Fourth Generation Light Sources, Springer Proceedings in Physics Vol. 151 ( Springer, Switzerland, 2013), pp. 289314.
20.
20. A. Ney, T. Kammermeier, V. Ney, K. Ollefs, and S. Ye, J. Magn. Magn. Mater. 320, 3341 (2008).
http://dx.doi.org/10.1016/j.jmmm.2008.07.008
21.
21. M. Sawicki, W. Stefanowicz, and A. Ney, Semicond. Sci. Technol. 26, 064006 (2011).
http://dx.doi.org/10.1088/0268-1242/26/6/064006
22.
22. J. L. DuBois, P. Mukherjee, T. D. P. Stack, B. Hedman, E. I. Solomon, and K. O. Hodgson, J. Am. Chem. Soc. 122, 5775 (2000).
http://dx.doi.org/10.1021/ja993134p
http://aip.metastore.ingenta.com/content/aip/journal/jap/119/16/10.1063/1.4947455
Loading
/content/aip/journal/jap/119/16/10.1063/1.4947455
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/119/16/10.1063/1.4947455
2016-04-26
2016-10-01

Abstract

A series of Co/Cu co-doped ZnO epitaxial films has been grown on sapphire substrates to investigate the possibilities of tailoring the magnetic properties in functional ZnO-Co/Cu nano-composites. The growth was performed using reactive magnetron sputtering varying the oxygen partial pressure to tune the incorporation of the dopants and the resulting valence state. At high oxygen pressures, Co2+ is formed and the resulting magnetic properties are very similar to phase pure paramagnetic Co-doped ZnO samples. However, the formation of a secondary CuO phase reduces the overall structural quality of the layers and virtually no substitutional incorporation of Cu2+ in ZnO could be evidenced. At low oxygen pressures, a significant fraction of metallic Co and Cu forming nanometer-sized superparamagnetic precipitates of a Co/Cu alloy can be evidenced which are embedded in a ZnO host matrix.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/119/16/1.4947455.html;jsessionid=CcSLC4EkLDJD6-W-v3VG_KqB.x-aip-live-02?itemId=/content/aip/journal/jap/119/16/10.1063/1.4947455&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/119/16/10.1063/1.4947455&pageURL=http://scitation.aip.org/content/aip/journal/jap/119/16/10.1063/1.4947455'
Right1,Right2,Right3,