Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/119/17/10.1063/1.4948299
1.
1. Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, J. Phys. D. Appl. Phys. 43, 354002 (2010).
http://dx.doi.org/10.1088/0022-3727/43/35/354002
2.
2. C. J. Humphreys, MRS Bull. 33, 459 (2011).
http://dx.doi.org/10.1557/mrs2008.91
3.
3. S. Saito, R. Hashimoto, J. Hwang, and S. Nunoue, Appl. Phys. Express 6, 111004 (2013).
http://dx.doi.org/10.7567/APEX.6.111004
4.
4. T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys., Part 1 38, 3976 (1999).
http://dx.doi.org/10.1143/JJAP.38.3976
5.
5. A. Khan, Nat. Photonics 3, 432 (2009).
http://dx.doi.org/10.1038/nphoton.2009.124
6.
6. S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, and S. Nakamura, Acta Mater. 61, 945 (2013).
http://dx.doi.org/10.1016/j.actamat.2012.10.042
7.
7. D. Miller, D. Chemla, T. Damen, A. Gossard, W. Wiegmann, T. Wood, and C. Burrus, Phys. Rev. Lett. 53, 2173 (1984).
http://dx.doi.org/10.1103/PhysRevLett.53.2173
8.
8. F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, R10024 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.R10024
9.
9. V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, and P. Lugli, Phys. Rev. B 60, 8849 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.8849
10.
10. J. T. Griffiths, S. Zhang, B. Rouet-Leduc, W. Y. Fu, A. Bao, D. Zhu, D. J. Wallis, A. Howkins, I. Boyd, D. Stowe, M. J. Kappers, C. J. Humphreys, and R. A. Oliver, Nano Lett. 15, 7639 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b03531
11.
11. C. Ren, Mater. Sci. Technol. 32(5), 418433 (2015).
12.
12. J. S. Speck and S. F. Chichibu, MRS Bull. 34, 304 (2011).
http://dx.doi.org/10.1557/mrs2009.91
13.
13. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, Phys. Rev. B 32, 1043 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.1043
14.
14. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996).
http://dx.doi.org/10.1063/1.116981
15.
15. S. Chichibu, K. Wada, and S. Nakamura, Appl. Phys. Lett. 71, 2346 (1997).
http://dx.doi.org/10.1063/1.120025
16.
16. Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, Appl. Phys. Lett. 70, 981 (1997).
http://dx.doi.org/10.1063/1.118455
17.
17. P. R. C. Kent and A. Zunger, Appl. Phys. Lett. 79, 1977 (2001).
http://dx.doi.org/10.1063/1.1405003
18.
18. L.-W. Wang, Phys. Rev. B 63, 245107 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.245107
19.
19. R. A. Oliver, S. E. Bennett, T. Zhu, D. J. Beesley, M. J. Kappers, D. W. Saxey, A. Cerezo, and C. J. Humphreys, J. Phys. D. Appl. Phys. 43, 354003 (2010).
http://dx.doi.org/10.1088/0022-3727/43/35/354003
20.
20. T. M. Smeeton, M. J. Kappers, J. S. Barnard, M. E. Vickers, and C. J. Humphreys, Appl. Phys. Lett. 83, 5419 (2003).
http://dx.doi.org/10.1063/1.1636534
21.
21. M. J. Galtrey, R. A. Oliver, M. J. Kappers, C. J. Humphreys, D. J. Stokes, P. H. Clifton, and A. Cerezo, Appl. Phys. Lett. 90, 061903 (2007).
http://dx.doi.org/10.1063/1.2431573
22.
22. J. R. Riley, T. Detchprohm, C. Wetzel, and L. J. Lauhon, Appl. Phys. Lett. 104, 152102 (2014).
http://dx.doi.org/10.1063/1.4871510
23.
23. F. Tang, T. Zhu, F. Oehler, W. Y. Fu, J. T. Griffiths, F. C.-P. Massabuau, M. J. Kappers, T. L. Martin, P. A. J. Bagot, M. P. Moody, and R. A. Oliver, Appl. Phys. Lett. 106, 072104 (2015).
http://dx.doi.org/10.1063/1.4909514
24.
24. S. Schulz, D. P. Tanner, E. P. O'Reilly, M. A. Caro, D. Sutherland, M. J. Davies, P. Dawson, F. Tang, J. T. Griffiths, F. Oehler, M. J. Kappers, R. A. Oliver, and C. J. Humphreys, Phys. Rev. B 92, 235419 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.235419
25.
25. R. Kucharski, M. Zając, R. Doradziński, M. Rudziński, R. Kudrawiec, and R. Dwiliński, Semicond. Sci. Technol. 27, 024007 (2012).
http://dx.doi.org/10.1088/0268-1242/27/2/024007
26.
26. R. A. Oliver, F. C.-P. Massabuau, M. J. Kappers, W. A. Phillips, E. J. Thrush, C. C. Tartan, W. E. Blenkhorn, T. J. Badcock, P. Dawson, M. A. Hopkins, D. W. E. Allsopp, and C. J. Humphreys, Appl. Phys. Lett. 103, 141114 (2013).
http://dx.doi.org/10.1063/1.4824193
27.
27. A. Rosenauer, T. Mehrtens, K. Müller, K. Gries, M. Schowalter, P. V. Satyam, S. Bley, C. Tessarek, D. Hommel, K. Sebald, M. Seyfried, J. Gutowski, A. Avramescu, K. Engl, and S. Lutgen, Ultramicroscopy 111, 1316 (2011).
http://dx.doi.org/10.1016/j.ultramic.2011.04.009
28.
28. K. H. Baloch, A. C. Johnston-Peck, K. Kisslinger, E. A. Stach, and S. Gradečak, Appl. Phys. Lett. 102, 191910 (2013).
http://dx.doi.org/10.1063/1.4807122
29.
29. A. B. Yankovich, A. V. Kvit, X. Li, F. Zhang, V. Avrutin, H. Liu, N. Izyumskaya, Ü. Özgür, B. Van Leer, H. Morkoç, and P. M. Voyles, Microsc. Microanal. 20, 864 (2014).
http://dx.doi.org/10.1017/S1431927614000427
30.
30. L. J. Allen, A. J. D'Alfonso, and S. D. Findlay, Ultramicroscopy 151, 11 (2015).
http://dx.doi.org/10.1016/j.ultramic.2014.10.011
31.
31. R. F. Loane, P. Xu, and J. Silcox, Acta Crystallogr., Sect. A 47, 267 (1991).
http://dx.doi.org/10.1107/S0108767391000375
32.
32. M. Schowalter, A. Rosenauer, J. T. Titantah, and D. Lamoen, Acta Crystallogr., A 65, 227 (2009).
http://dx.doi.org/10.1107/S0108767309004966
33.
33. D. D. Perovic, C. J. Rossouw, and A. Howie, Ultramicroscopy 52, 353 (1993).
http://dx.doi.org/10.1016/0304-3991(93)90046-Z
34.
34. V. Grillo, E. Carlino, and F. Glas, Phys. Rev. B 77, 054103 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.054103
35.
35. S. Plimpton, J. Comput. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
36.
36. A. Béré and A. Serra, Philos. Mag. 86, 2159 (2006).
http://dx.doi.org/10.1080/14786430600640486
37.
37. C. J. Rossouw, L. J. Allen, S. D. Findlay, and M. P. Oxley, Ultramicroscopy 96, 299 (2003).
http://dx.doi.org/10.1016/S0304-3991(03)00095-0
38.
38. C. Dwyer and J. Etheridge, Ultramicroscopy 96, 343 (2003).
http://dx.doi.org/10.1016/S0304-3991(03)00100-1
39.
39. J. M. Lebeau, S. D. Findlay, L. J. Allen, and S. Stemmer, Ultramicroscopy 110, 118 (2010).
http://dx.doi.org/10.1016/j.ultramic.2009.10.001
40.
40. H. E, K. E. Macarthur, T. J. Pennycook, E. Okunishi, A. J. D'Alfonso, N. R. Lugg, L. J. Allen, and P. D. Nellist, Ultramicroscopy 133, 109 (2013).
http://dx.doi.org/10.1016/j.ultramic.2013.07.002
41.
41. C. J. Rossouw, C. Dwyer, H. Katz-Boon, and J. Etheridge, Ultramicroscopy 136, 216 (2014).
http://dx.doi.org/10.1016/j.ultramic.2013.10.005
42.
42. C. Dwyer, R. Erni, and J. Etheridge, Ultramicroscopy 110, 952 (2010).
http://dx.doi.org/10.1016/j.ultramic.2010.01.007
43.
43. V. Potin, E. Hahn, A. Rosenauer, D. Gerthsen, B. Kuhn, F. Scholz, A. Dussaigne, B. Damilano, and N. Grandjean, J. Cryst. Growth 262, 145 (2004).
http://dx.doi.org/10.1016/j.jcrysgro.2003.10.082
44.
44. L. Hoffmann, H. Bremers, H. Jönen, U. Rossow, M. Schowalter, T. Mehrtens, A. Rosenauer, and A. Hangleiter, Appl. Phys. Lett. 102, 102110 (2013).
http://dx.doi.org/10.1063/1.4795623
45.
45. A. Dussaigne, B. Damilano, N. Grandjean, and J. Massies, in International Conference on Molecular Beam Epitaxy ( IEEE, 2002), pp. 151152.
46.
46. M. J. Galtrey, R. A. Oliver, M. J. Kappers, C. J. Humphreys, P. H. Clifton, D. Larson, D. W. Saxey, and A. Cerezo, J. Appl. Phys. 104, 013524 (2008).
http://dx.doi.org/10.1063/1.2938081
47.
47. H. Chen, R. M. Feenstra, J. E. Northrup, J. Neugebauer, and D. W. Greve, MRS Internet J. Nitride Semicond. Res. 6, e11 (2001).
http://dx.doi.org/10.1557/S1092578300000235
48.
48. Y. Zhao, Q. Yan, C.-Y. Huang, S.-C. Huang, P. Shan Hsu, S. Tanaka, C.-C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, Appl. Phys. Lett. 100, 201108 (2012).
http://dx.doi.org/10.1063/1.4719100
49.
49. N. Sharma, D. Tricker, P. Thomas, Z. Bougrioua, K. Jacobs, J. Cheyns, I. Moerman, T. Thrush, L. Considine, A. Boyd, and C. Humphreys, J. Cryst. Growth 230, 438 (2001).
http://dx.doi.org/10.1016/S0022-0248(01)01252-0
50.
50. T. Mehrtens, M. Schowalter, D. Tytko, P. Choi, D. Raabe, L. Hoffmann, H. Jönen, U. Rossow, A. Hangleiter, and A. Rosenauer, Appl. Phys. Lett. 102, 132112 (2013).
http://dx.doi.org/10.1063/1.4799382
51.
51. M. E. Vickers, M. J. Kappers, T. M. Smeeton, E. J. Thrush, J. S. Barnard, and C. J. Humphreys, J. Appl. Phys. 94, 1565 (2003).
http://dx.doi.org/10.1063/1.1587251
52.
52. M. E. Vickers, J. L. Hollander, C. McAleese, M. J. Kappers, M. A. Moram, and C. J. Humphreys, J. Appl. Phys. 111, 043502 (2012).
http://dx.doi.org/10.1063/1.3678631
53.
53. H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, J. Phys. D: Appl. Phys. 41, 225104 (2008).
http://dx.doi.org/10.1088/0022-3727/41/22/225104
54.
54. K. L. Teo, J. S. Colton, P. Y. Yu, E. R. Weber, M. F. Li, W. Liu, K. Uchida, H. Tokunaga, N. Akutsu, and K. Matsumoto, Appl. Phys. Lett. 73, 1697 (1998).
http://dx.doi.org/10.1063/1.122249
55.
55. D. Watson-Parris, M. J. Godfrey, P. Dawson, R. A. Oliver, M. J. Galtrey, M. J. Kappers, and C. J. Humphreys, Phys. Rev. B 83, 115321 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.115321
56.
56. F. B. Naranjo, M. A. Sánchez-García, F. Calle, E. Calleja, B. Jenichen, and K. H. Ploog, Appl. Phys. Lett. 80, 231 (2002).
http://dx.doi.org/10.1063/1.1432751
57.
57. D.-P. Nguyen, N. Regnault, R. Ferreira, and G. Bastard, Solid State Commun. 130, 751 (2004).
http://dx.doi.org/10.1016/j.ssc.2004.03.048
58.
58. H. Jeong, H. J. Jeong, H. M. Oh, C.-H. Hong, E.-K. Suh, G. Lerondel, and M. S. Jeong, Sci. Rep. 5, 9373 (2015).
http://dx.doi.org/10.1038/srep09373
59.
59. T.-J. Yang, R. Shivaraman, J. S. Speck, and Y.-R. Wu, J. Appl. Phys. 116, 113104 (2014).
http://dx.doi.org/10.1063/1.4896103
http://aip.metastore.ingenta.com/content/aip/journal/jap/119/17/10.1063/1.4948299
Loading
/content/aip/journal/jap/119/17/10.1063/1.4948299
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/119/17/10.1063/1.4948299
2016-05-02
2016-12-09

Abstract

Atom probe tomography and quantitative scanning transmission electron microscopy are used to assess the composition of non-polar a-plane (11-20) InGaN quantum wells for applications in optoelectronics. The average quantum well composition measured by atom probe tomography and quantitative scanning transmission electron microscopy quantitatively agrees with measurements by X-ray diffraction. Atom probe tomography is further applied to study the distribution of indium atoms in non-polar a-plane (11-20) InGaN quantum wells. An inhomogeneous indium distribution is observed by frequency distribution analysis of the atom probe tomography measurements. The optical properties of non-polar (11-20) InGaN quantum wells with indium compositions varying from 7.9% to 20.6% are studied. In contrast to non-polar m-plane (1-100) InGaN quantum wells, the non-polar a-plane (11-20) InGaN quantum wells emit at longer emission wavelengths at the equivalent indium composition. The non-polar a-plane (11-20) quantum wells also show broader spectral linewidths. The longer emission wavelengths and broader spectral linewidths may be related to the observed inhomogeneous indium distribution.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/119/17/1.4948299.html;jsessionid=0gTaBC36IojCiAoskAQJwFdD.x-aip-live-02?itemId=/content/aip/journal/jap/119/17/10.1063/1.4948299&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/119/17/10.1063/1.4948299&pageURL=http://scitation.aip.org/content/aip/journal/jap/119/17/10.1063/1.4948299'
Right1,Right2,Right3,