Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.See The Nobel Prize in Physics 2014 was awarded jointly to Isamu Akasaki, Hiroshi Amano and Shuji Nakamura “for the invention of efficient blue light-emitting diodes which has enabled bright and energy-saving white light sources.”
2. Q. Dai, M. F. Schubert, J. K. Kim, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, Appl. Phys. Lett. 94, 111109 (2009).
3. A. Hangleiter, D. Fuhrmann, M. Grewe, F. Hitzel, G. Klewer, S. Lahmann, C. Netzel, N. Riedel, and U. Rossow, Phys. Status Solidi A 201, 2808 (2004).
4. Y. L. Li, Y. R. Huang, and Y. H. Lai, Appl. Phys. Lett. 91, 181113 (2007).
5. T. Sano, T. Doi, S. A. Inada, T. Sugiyama, Y. Honda, H. Amano, and T. Yoshino, Jpn. J. Appl. Phys., Part 1 52, 08JK09 (2013).
6. S. A. Kukushkin, A. V. Osipov, V. N. Bessolov, B. K. Medvedev, V. K. Nevolin, and K. A. Tcarik, Rev. Adv. Mater. Sci. 17, 1 (2008).
7. S. Nakamura, M. Senoh, and T. Mukai, Appl. Phys. Lett. 62, 2390 (1993).
8. S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).
9. M. J. Davies, P. Dawson, F. C.-P. Massabuau, F. Oehler, R. A. Oliver, M. J. Kappers, T. J. Badcock, and C. J. Humphreys, Phys. Status Solidi C 11, 750 (2014).
10. J. Singh, Semiconductor Optoelectronics, Physics and Technology ( McGraw-Hill, 1995).
11. N. Nanhui, W. Huaibing, L. Naixin, H. Yanhui, H. Jun, D. Jun, and J. Guangdi, J. Cryst. Growth 286, 209 (2006).
12. T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys., Part 2 36, L382 (1997).
13. F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 63, 193201 (2001).
14. O. Mayrock, H.-J. Wunsche, and F. Henneberger, Phys. Rev. B 62, 16870 (2000).
15. T. Akasaka, H. Gotoh, H. Nakano, and T. Makimoto, Appl. Phys. Lett. 86, 191902 (2005).
16. S. F. Chichibu, T. Azuhata, T. Sota, T. Mukai, and S. Nakamura, J. Appl. Phys. 88, 5153 (2000).
17. J. Wang, L. Wang, W. Zhao, Z. Hao, and Y. Luo, Appl. Phys. Lett. 97, 201112 (2010).
18. J. A. Davidson, P. Dawson, T. Wang, T. Sugahara, J. W. Orton, and S. Sakai, Semicond. Sci. Technol. 15, 497 (2001).
19. J. Feldmann, G. Peter, E. O. Gobel, P. Dawson, K. Moore, C. T. Foxon, and R. J. Elliott, Phys. Rev. Lett. 59, 2337 (1987).
20. S. Chichibu, K. Wada, and S. Nakamura, Appl. Phys. Lett. 71, 2346 (1997).
21. K. L. Teo, J. S. Coulton, P. S. Yu, E. R. Weber, M. F. Li, W. Liu, K. Uchida, H. Tokunaga, N. Akutsa, and K. Matsumoto, Appl. Phys. Lett. 73, 1697 (1998).
22. J. Bai, T. Wang, and S. Sakai, J. Appl. Phys. 88, 4729 (2000).
23. I. L. Krestnikov, N. N. Ledentsov, A. Hoffman, D. Bimberg, A. V. Sakharov, W. V. Lundin, A. F. Tsatsul'nikov, A. S. Usikov, and D. Gerthsen, Phys. Rev. B 66, 155310 (2002).
24. H. Schomig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, Phys. Rev. Lett. 92, 106802 (2004).
25. J. Hader, J. V. Moloney, and S. W. Koch, Appl. Phys. Lett. 96, 221106 (2010).
26. S. Hammersley, D. Watson-Parris, P. Dawson, T. J. Godfrey, M. J. Kappers, C. McAleese, R. A. Oliver, and C. J. Humphreys, J. Appl. Phys. 111, 083512 (2012).
27. H. Morkoc, Handbook of Nitride Semiconductors and Devices ( Wiley VCH, Berlin, 2008), Vol. 3.
28. J. Xie, X. Ni, Q. Fan, R. Shimada, U. Ozgur, and H. Morkoc, Appl. Phys. Lett. 93, 121107 (2008).
29. S. Kalliakos, X. B. Zhang, T. Taliercio, P. Lefebvre, B. Gil, N. Grandjean, B. Damilano, and J. Massies, Appl. Phys. Lett. 80, 428 (2002).
30. H. Y. Ryu, G. H. Ryu, S. H. Lee, and H. J. Kim, J. Korean Phys. Soc. 63, 180 (2013).
31. M. J. Cich, R. I. Aldaz, A. Chakraborty, A. David, M. J. Grundmann, A. Tyagi, M. Zhang, F. M. Steranka, and M. R. Krames, Appl. Phys. Lett. 101, 223509 (2012).
32. T. Guhne, Z. Bougrioua, S. Laught, M. Nemoz, P. Vennegues, B. Vinter, and M. Leroux, Phys. Rev. B 77, 075308 (2008).
33. T. Paskova, Phys. Status Solidi B 245, 1011 (2008).
34. G. A. Garrett, H. Shen, M. Wraback, A. Tyagi, M. C. Schmidt, J. S. Speck, S. P. DenBaars, and S. Nakamura, Phys. Status Solidi C 6, S800 (2009).
35. S. Marcinkevicius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 103, 111107 (2013).
36. R. A. Oliver, F. C.-P. Massbuau, M. J. Kappers, W. A. Phillips, E. J. Thrush, C. C. Tartan, W. E. Blenkhorn, T. J. Badcock, P. Dawson, M. A. Hopkins, D. W. Allsopp, and C. J. Humphreys, Appl. Phys. Lett. 103, 141114 (2013).
37. D. Sutherland, T. Zhu, J. T. Griffiths, F. Tang, P. Dawson, D. Kundys, F. Oehler, M. J. Kappers, C. J. Humphreys, and R. A. Oliver, Phys. Status Solidi B 252, 965 (2015).
38. D. M. Graham, A. Soltani-Vala, P. Dawson, M. J. Godfrey, T. M. Smeeton, J. S. Barnard, M. J. Kappers, C. J. Humphreys, and E. J. Thrush, J. Appl. Phys. 97, 103508 (2005).
39. P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, Appl. Phys. Lett. 71, 569 (1997).
40. P. G. Eliseev, M. Osinski, J. Lee, T. Sugahara, and S. Sakai, J. Electron. Mater. 29, 332 (2000).
41. Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 73, 1370 (1998).
42. O. Rubel, S. D. Baranovskii, J. D. Hantke, J. Koch, P. Thomas, J. M. Marshalla, W. Stolz, and W. W. Ruhle, J. Optoelectron. Adv. Mater. 7, 115 (2005).
43. Y. Narukawa, Y. Kawakami, M. Funato, M. Fujita, S. Fujita, and S. Nakamura, Appl. Phys. Lett. 70, 981 (1997).
44. Y. Narukawa, Y. Kawakami, S. Fujita, and S. Nakamura, Phys. Rev. B 55, R1938 (1997).
45. K. P. O'Donnell, R. W. Martin, and P. G. Middleton, Phys. Rev. Lett. 82, 237 (1999).
46. P. Ruterana, S. Kret, A. Vivet, G. Maciejewski, and P. Dluzewski, J. Appl. Phys. 91, 8979 (2002).
47. J. Narayan, H. Wang, J. Ye, S.-J. Hon, K. Fox, J. C. Chen, H. K. Choi, and J. C. Fan, Appl. Phys. Lett. 81, 841 (2002).
48. L. Bellaiche, T. Mattila, L.-W. Wang, S.-H. Wei, and A. Zunger, Appl. Phys. Lett. 74, 1842 (1999).
49. L.-W. Wang, Phys. Rev. B 63, 245107 (2001).
50. T. M. Smeeton, M. J. Kappers, J. S. Barnard, M. E. Vickers, and C. J. Humphreys, Appl. Phys. Lett. 83, 5419 (2003).
51. M. J. Galtrey, R. A. Oliver, M. J. Kappers, C. J. Humphreys, P. Clifton, D. Larson, D. Saxey, and A. Cerezo, J. Appl. Phys. 104, 013524 (2008).
52. D. Watson-Parris, M. J. Godfrey, P. Dawson, R. A. Oliver, M. J. Galtrey, M. J. Kappers, and C. J. Humphreys, Phys. Rev. B 83, 115321 (2011).
53. S. Schulz, M. A. Caro, C. Coughlan, and E. P. O'Reilly, Phys. Rev. B 91, 035439 (2015).
54. A. Morel, P. Lefebvre, S. Kalliakos, T. Taliercio, T. Bretagnon, and B. Gil, Phys. Rev. B 68, 045331 (2003).
55. C.-N. Brosseau, M. Perrin, C. Silva, and R. Leonelli, Phys. Rev. B 82, 085305 (2010).
56. F. Tang, T. Thu, F. Oehler, W. Y. Fen, J. T. Griffiths, F. C.-P. Massabuau, M. J. Kappers, T. J. Martin, P. A. Bagot, M. P. Moody, and R. A. Oliver, Appl. Phys. Lett. 106, 072104 (2015).
57. T. J. Badcock, P. Dawson, M. J. Kappers, C. McAleese, J. L. Hollander, C. F. Johnston, D. V. Sridhara Rao, A. M. Sanchez, and C. J. Humphreys, J. Appl. Phys. 105, 123112 (2009).
58. S. Kalliakos, X. B. Zhang, T. Talierco, P. Lefebvre, B. Gil, N. Grandjean, B. Damilano, and J. Massies, Appl. Phys. Lett. 80, 428 (2002).
59. S. Schulz, D. P. Tanner, E. P. O'Reilly, M. A. Caro, D. Sutherland, M. J. Davies, P. Dawson, F. Tang, J. T. Griffiths, F. Oehler, M. J. Kappers, R. A. Oliver, and C. J. Humphreys, Phys. Rev. B 92, 235419 (2015).
60. S. Hammersley, M. J. Kappers, F. C.-P. Massabuau, S.-L. Sahonta, P. Dawson, R. A. Oliver, and C. J. Humphreys, Appl. Phys. Lett. 107, 132106 (2015).

Data & Media loading...


Article metrics loading...



In this paper, we compare and contrast the experimental data and the theoretical predictions of the low temperature optical properties of polar and nonpolar InGaN/GaN quantum well structures. In both types of structure, the optical properties at low temperatures are governed by the effects of carrier localisation. In polar structures, the effect of the in-built electric field leads to electrons being mainly localised at well width fluctuations, whereas holes are localised at regions within the quantum wells, where the random In distribution leads to local minima in potential energy. This leads to a system of independently localised electrons and holes. In nonpolar quantum wells, the nature of the hole localisation is essentially the same as the polar case but the electrons are now coulombically bound to the holes forming localised excitons. These localisation mechanisms are compatible with the large photoluminescence linewidths of the polar and nonpolar quantum wells as well as the different time scales and form of the radiative recombination decay curves.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd