Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
S. Samukawa, K. Sakamoto, and K. Ichiki, “ High-efficiency low energy neutral beam generation using negative ions in pulsed plasma,” Jpn. J. Appl. Phys., Part 2 40, L9979 (2001).
C. Thomas, Y. Tamura, T. Okada, A. Higo, and S. Samukawa, “ Estimation of activation energy and surface reaction mechanism of chlorine neutral beam etching of GaAs for nanostructure fabrication,” J. Phys. D: Appl. Phys. 47, 275201 (2014).
C. Thomas, Y. Tamura, M. E. Syazwan, A. Higo, and S. Samukawa, “ Oxidation states of GaAs surface and their effects on neutral beam etching during nanopillar fabrication,” J. Phys. D: Appl. Phys. 47, 215203 (2014).
M. Draghici and E. Stamate, “ Properties and etching rates of negative ions in inductively coupled plasmas and dc discharges produced in Ar/SF6,” J. Appl. Phys. 107, 123304 (2010).
O. V. Vozniy and G. Y. Yeom, “ High-energy negative ion beam obtained from pulsed inductively coupled plasma for charge-free etching process,” Appl. Phys. Lett. 94, 231502 (2009).
D. Marinov, Z. el Otell, M. D. Bowden, and N. St. J. Braithwaite, “ Extraction and neutralization of positive and negative ions from a pulsed electronegative inductively coupled plasma,” Plasma Sources Sci. Technol. 24(6), 065008 (2015).
U. Fantz, P. Franzen, and D. Wünderlich, “ Development of negative hydrogen ion sources for fusion: Experiments and modeling,” Chem. Phys. 398, 716 (2012).
L. Schiesko, P. McNeely, U. Fantz, P. Franzen, and NNBI Team, “ Caesium influence on plasma parameters and source performance during conditioning of the prototype ITER neutral beam injector negative ion source,” Plasma Phys. Controlled Fusion 53, 085029 (2011).
A. Aanesland, D. Rafalskyi, J. Bredin, P. Grondein, N. Oudini, P. Chabert, D. Levko, L. Garrigues, and G. Hagelaar, “ The PEGASES gridded ion-ion thruster performance and predictions,” IEEE Trans. Plasma Sci. 43, 321326 (2015).
T. Lafleur, D. Rafalskyi, and A. Aanesland, “ Alternate extraction and acceleration of positive and negative ions from a gridded plasma source,” Plasma Sources Sci. Technol. 24, 015005 (2015).
D. Renaud, D. Gerst, S. Mazouffre, and A. Aanesland, “ E × B probe measurements in molecular and electronegative plasmas,” Rev. Sci. Instrum. 86, 123507 (2015).
A. Ueno et al., “ Interesting experimental results in Japan proton accelerator research complex H ion-source development (invited),” Rev. Sci. Instrum. 81, 02A720 (2010).
D. P. Moehs, J. Peters, and J. Sherman, “ Negative hydrogen ion sources for accelerators,” IEEE Trans. Plasma Sci. 33, 17861798 (2005).
J. Lettry, D. Aguglia, P. Andersson, S. Bertolo, A. Butterworth, Y. Coutron, A. Dallocchio, E. Chaudet, J. Gil-Flores, R. Guida, J. Hansen, A. Hatayama, I. Koszar, E. Mahner, C. Mastrostefano, S. Mathot, S. Mattei, Ø. Midttun, P. Moyret, D. Nisbet, K. Nishida, M. O'Neil, M. Ohta, M. Paoluzzi, C. Pasquino, H. Pereira, J. Rochez, J. S. Alvarez, J. S. Arias, R. Scrivens, T. Shibata, D. Steyaert, N. Thaus, and T. Yamamoto, “ Status and operation of the Linac4 ion source prototypes,” Rev. Sci. Instrum. 85, 02B122 (2014).
M. Bacal and M. Wada, “ Negative hydrogen ion production mechanisms,” Appl. Phys. Rev. 2, 021305 (2015).
S. Béchu, A. Soum-Glaude, A. Bès, A. Lacoste, P. Svarnas, S. Aleiferis, A. A. Ivanov, and M. Bacal, “ Multi-dipolar microwave plasmas and their application to negative ion production,” Phys. Plasmas 20, 101601 (2013).
J. Komppula, O. Tarvainen, S. Lätti, T. Kalvas, H. Koivisto, V. Toivanen, and P. Myllyperkiö, “ VUV-diagnostics of a filament-driven arc discharge H-ion source,” AIP Conf. Proc. 1515, 6673 (2013).
T. Babkina, T. Gans, and U. Czarnetzki, “ Energy analysis of hyperthermal hydrogen atoms generated through surface neutralisation of ions,” Europhys. Lett. 72, 235241 (2005).
L. Schiesko et al., “ H-production on a graphite surface in a hydrogen plasma,” Plasma Sources Sci. Technol. 17, 035023 (2008).
S. Mahieu and D. Depla, “ Correlation between electron and negative O ion emission during reactive sputtering of oxides,” Appl. Phys. Lett. 90, 121117 (2007).
H. Toyoda, K. Goto, T. Ishijima, T. Morita, N. Ohshima, and K. Kinoshita, “ Fine structure of O kinetic energy distribution in RF plasma and its formation mechanism,” Appl. Phys. Express 2, 126001 (2009).
T. Ishijima, K. Goto, N. Ohshima, K. Kinoshita, and H. Toyoda, “ Spatial variation of negative oxygen ion energy distribution in RF magnetron plasma with oxide target,” Jpn. J. Appl. Phys., Part 1 48, 116004 (2009).
J. M. Andersson, E. Wallin, E. P. Münger, and U. Helmersson, “ Energy distributions of positive and negative ions during magnetron sputtering of an Al target in Ar/O2 mixtures,” J. Appl. Phys. 100, 33305 (2006).
R. M. A. Heeren et al., “ Angular and energy distributions of surface produced H- and D-ions in a barium surface conversion source,” J. Appl. Phys. 75, 4340 (1994).
S. Mahieu, W. P. Leroy, K. Van Aeken, and D. Depla, “ Modeling the flux of high energy negative ions during reactive magnetron sputtering,” J. Appl. Phys. 106, 093302 (2009).
N. Ito, N. Oka, Y. Sato, and Y. Shigesato, “ Effects of energetic ion bombardment on structural and electrical properties of Al-doped ZnO films deposited by RF-superimposed DC magnetron sputtering,” Jpn. J. Appl. Phys. 49, 071103 (2010).
N. Britun, T. Minea, S. Konstantinidis, and R. Snyders, “ Plasma diagnostics for understanding the plasma-surface interaction in HiPIMS discharges: A review,” J. Phys. D: Appl. Phys. 47, 224001 (2014).
R. S. Hemsworth and T. Inoue, IEEE Trans. Plasma Sci. 33(6), 1799 (2005).
B. Heinemann, U. Fantz, P. Franzen, M. Froeschle, M. Kircher, W. Kraus, C. Martens, R. Nocentini, R. Riedl, B. Ruf, L. Schiesko, C. Wimmer, and D. Wuenderlich, “ Negative ion test facility ELISE-status and first results,” Fusion Eng. Des. 88, 512516 (2013).
U. Fantz, L. Schiesko, and D. Wuenderlich, “ Plasma expansion across a transverse magnetic field in a negative hydrogen ion source for fusion,” Plasma Sources Sci. Technol. 23, 044002 (2014).
G. Fubiani and J. P. Boeuf, “ Role of positive ions on the surface production of negative ions in a fusion plasma reactor type negative ion source-insights from a three dimensional particle-in-cell Monte Carlo collisions model,” Phys. Plasmas 20, 113511 (2013).
G. Fubiani and J. P. Boeuf, “ Plasma asymmetry due to the magnetic filter in fusion-type negative ion sources: Comparisons between two and three-dimensional particle-in-cell simulations,” Phys. Plasmas 21, 073512 (2014).
S. Mochalskyy, D. Wuenderlich, U. Fantz, P. Franzen, and T. Minea, “ Towards a realistic 3D simulation of the extraction region in ITER NBI relevant ion source,” Nucl. Fusion 55, 033011 (2015).
S. Mochalskyy, D. Wuenderlich, B. Ruf, U. Fantz, P. Franzen, and T. Minea, “ On the meniscus formation and the negative hydrogen ion extraction from ITER neutral beam injection relevant ion source,” Plasma Phys. Controlled Fusion 56, 105001 (2014).
V. Toigo et al., “ Progress in the realization of the PRIMA neutral beam test facility,” Nucl. Fusion 55(8), 083025 (2015).
V. Antoni, P. Agostinetti, D. Aprile, M. Cavenago, G. Chitarin, N. Fonnesu, N. Marconato, N. Pilan, E. Sartori, G. Serianni, and P. Veltri, “ Physics design of the injector source for ITER neutral beam injector,” Rev. Sci. Instrum. 85, 02B128 (2014).
K. Miyamoto, S. Okuda, S. Nishioka, and A. Hatayama, “ Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources,” J. Appl. Phys. 114, 103302 (2013).
V. Dudnikov and R. P. Johnson, “ Cesiation in highly efficient surface plasma sources,” Phys. Rev. Spec. Top. Accel. Beams 14, 054801 (2011).
V. Dudnikov, SU patent application C1.H013/04, No. 411542 (10 March 1972).
V. Dudnikov, B. Han, R. P. Johnson, S. N. Murray, T. R. Pennisi, M. Santana, M. P. Stockli, and R. F. Welton, “ Surface plasma source electrode activation by surface impurities,” AIP Conf. Proc. 1390, 411421 (2011).
A. Simonin, J. Achard, K. Achkasov, S. Bechu, C. Baudouin, O. Baulaigue, C. Blondel, J. P. Boeuf, D. Bresteau, G. Cartry, W. Chaibi, C. Drag, H. P. L. de Esch, D. Fiorucci, G. Fubiani, I. Furno, R. Futtersack, P. Garibaldi, A. Gicquel, C. Grand, P. Guittienne, G. Hagelaar, A. Howling, R. Jacquier, M. J. Kirkpatrick, D. Lemoine, B. Lepetit, T. Minea, E. Odic, A. Revel, B. A. Soliman, and P. Teste, “ R&D around a photoneutralizer-based NBI system (Siphore) in view of a DEMO tokamak steady state fusion reactor,” Nucl. Fusion 55, 123020 (2015).
L. Schiesko, G. Cartry, C. Hopf, T. Höschen, G. Meisl, O. Encke, B. Heinemann, K. Achkasov, P. Amsalem, and U. Fantz, “ First experiments with Cs doped Mo as surface converter for negative hydrogen ion sources,” J. Appl. Phys. 118, 073303 (2015).
L. Schiesko, M. Carrère, J.-M. Layet, and G. Cartry, “ Negative ion surface production through sputtering in hydrogen plasma,” Appl. Phys. Lett. 95, 191502 (2009).
L. Schiesko et al., “ A comparative study of H and D production on graphite surfaces in H2 and D2 plasmas,” Plasma Sources Sci. Technol. 19, 045016 (2010).
P. Kumar et al., “ Enhanced negative ion yields on diamond surfaces at elevated temperatures,” J. Phys. D: Appl. Phys. 44, 372002 (2011).
A. Ahmad et al., “ Negative-ion production on carbon materials in hydrogen plasma: Influence of the carbon hybridization state and the hydrogen content on H yield,” J. Phys. D: Appl. Phys. 47, 085201 (2014).
A. Ahmad et al., “ Negative-ion surface production in hydrogen plasmas: Modeling of negative-ion energy distribution functions and comparison with experiments,” Plasma Sources Sci. Technol. 22, 025006 (2013).
G. Cartry et al., “ Production of negative ions on graphite surface in H2/D2 plasmas: Experiments and SRIM calculations,” Phys. Plasmas 19, 063503 (2012).
U. Kurutz and U. Fantz, “ Investigations on caesium-free alternatives for H formation at ion source relevant parameters,” AIP Conf. Proc. 1655, 020005 (2015).
A. V. Phelps, “ Cross sections and swarm coefficients for H+, H2+, H3+, H, H2, and H in H2 for energies from 0.1 eV to 10 keV,” J. Phys. Chem. Ref. Data 19, 653 (1990).
See for SIMION website.
J. F. Ziegler, J. P. Biersack, and M. D. Ziegler, SRIM—The Stopping and Range of Ions in Matter ( SRIM Co., 2008), ISBN: 0-9654207-1-X.
J. N. M. Van Wunnik, J. J. C. Geerlings, and J. Los, “ The velocity dependence of the negatively charged fraction of hydrogen scattered from cesiated tungsten surfaces,” Surf. Sci. 131, 1 (1983).
B. Rasser et al., “ Negative ionization of hydrogen on W and Cs,” Surf. Sci. 118, 697710 (1982).
H. Winter, “ Collisions of atoms and ions with surfaces under grazing incidence,” Phys. Rep. 367, 387582 (2002).
B. Rasser, J. N. M. Van Wunnik, and J. Los, “ Theoretical models of the negative ionization of hydrogen on clean tungsten, cesiated tungsten and cesium surfaces at low energies,” Surf. Sci. 118, 697710 (1982).
O. Tarvainen, T. Kalvas, J. Komppula, H. Koivisto, E. Geros, J. Stelzer, G. Rouleau, K. F. Johnson, and J. Carmichael, “ Effect of ion escape velocity and conversion surface material on H production,” AIP Conf. Proc. 1390, 113122 (2011).

Data & Media loading...


Article metrics loading...



This work focuses on the understanding of the production mechanism of negative-ions on surface in low pressure plasmas of H/D. The negative ions are produced on a Highly Oriented Pyrolytic Graphite sample negatively biased with respect to plasma potential. The negative ions created under the positive ion bombardment are accelerated towards the plasma, self-extracted, and detected according to their energy and mass by a mass spectrometer placed in front of the sample. The shape of the measured Negative-Ion Energy Distribution Function (NIEDF) strongly differs from the NIEDF of the ions emitted by the sample because of the limited acceptance angle of the mass spectrometer. To get information on the production mechanisms, we propose a method to obtain the distribution functions in energy and angle (NIEADFs) of the negative-ions emitted by the sample. It is based on an determination of the NIEADF and on an validation of the choice by comparison of the modelled and experimental NIEDFs.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd