Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/119/20/10.1063/1.4949264
1.
R. Stämpfli, An. Acad. Bras. Cienc. 30, 57 (1958).
2.
H. G. Coster, Biophys. J. 5, 669 (1965).
http://dx.doi.org/10.1016/S0006-3495(65)86745-5
3.
E. Neumann and K. Rosenheck, J. Membr. Biol. 10, 279 (1972).
http://dx.doi.org/10.1007/BF01867861
4.
K. Kinosita and T. Y. Tsong, Proc. Natl. Acad. Sci. U.S.A. 74, 1923 (1977).
http://dx.doi.org/10.1073/pnas.74.5.1923
5.
K. Kinosita and T. Y. Tsong, Biochim. Biophys. Acta 471, 227 (1977).
http://dx.doi.org/10.1016/0005-2736(77)90252-8
6.
I. G. Abidor, V. B. Arakelyan, L. V. Chernomordik, Y. A. Chizmadzhev, V. F. Pastushenko, and M. R. Tarasevich, Bioelectrochem. Bioenerg. 6, 37 (1979).
http://dx.doi.org/10.1016/0302-4598(79)85005-9
7.
E. Neumann, M. Schaefer-Ridder, Y. Wang, and P. H. Hofschneider, EMBO J. 1, 841 (1982).
8.
L. M. Mir, H. Banoun, and C. Paoletti, Exp. Cell Res. 175, 15 (1988).
http://dx.doi.org/10.1016/0014-4827(88)90251-0
9.
J.-M. Escoffre, B. Nikolova, L. Mallet, J. Henri, C. Favard, M. Golzio, J. Teissié, I. Tsoneva, and M.-P. Rols, Curr. Gene Ther. 12, 417 (2012).
http://dx.doi.org/10.2174/156652312802762554
10.
D. Miklavčič, B. Mali, B. Kos, R. Heller, and G. Serša, Biomed. Eng. OnLine 13, 29 (2014).
http://dx.doi.org/10.1016/0006-2952(88)90344-9
11.
D. Knorr, M. Geulen, T. Grahl, and W. Sitzmann, Trends Food Sci. Technol. 5, 71 (1994).
http://dx.doi.org/10.1016/0924-2244(94)90240-2
12.
S. Mahnič-Kalamiza, E. Vorobiev, and D. Miklavčič, J. Membr. Biol. 247, 1279 (2014).
http://dx.doi.org/10.1007/s00232-014-9737-x
13.
K. El Ouagari, B. Gabriel, H. Benoist, and J. Teissié, Biochim. Biophys. Acta, Biomembr. 1151, 105 (1993).
http://dx.doi.org/10.1016/0005-2736(93)90077-D
14.
S. Raffy, C. Lazdunski, and J. Teissié, Mol. Membr. Biol. 21, 237 (2004).
http://dx.doi.org/10.1080/09687680410001711632
15.
U. Zimmermann, Biochim. Biophys. Acta 694, 227 (1982).
http://dx.doi.org/10.1016/0304-4157(82)90007-7
16.
M. Kandušer and M. Ušaj, Expert Opin. Drug Deliv. 11, 1885 (2014).
http://dx.doi.org/10.1517/17425247.2014.938632
17.
A. C. Saito, T. Ogura, K. Fujiwara, S. Murata, and S. M. Nomura, PLoS One 9, e106853 (2014).
http://dx.doi.org/10.1371/journal.pone.0106853
18.
R. Heller and R. J. Grasso, Biochim. Biophys. Acta, Biomembr. 1024, 185 (1990).
http://dx.doi.org/10.1016/0005-2736(90)90223-B
19.
A. Castro, G. Barbosacanovas, and B. Swanson, J. Food Process. Preserv. 17, 47 (1993).
http://dx.doi.org/10.1111/j.1745-4549.1993.tb00225.x
20.
L. Miller, J. Leor, and B. Rubinsky, Technol. Cancer Res. Treat. 4, 699 (2005).
http://dx.doi.org/10.1177/153303460500400615
21.
O. N. Pakhomova, B. W. Gregory, I. Semenov, and A. G. Pakhomov, PLoS One 8, e70278 (2013).
http://dx.doi.org/10.1371/journal.pone.0070278
22.
S. J. Beebe, N. M. Sain, and W. Ren, Cells 2, 136 (2013).
http://dx.doi.org/10.3390/cells2010136
23.
R. Nuccitelli, R. Wood, M. Kreis, B. Athos, J. Huynh, K. Lui, P. Nuccitelli, and E. H. Epstein, Jr., Exp. Dermatol. 23, 135 (2014).
http://dx.doi.org/10.1111/exd.12303
24.
P. T. Vernier, Y. Sun, L. Marcu, S. Salemi, C. M. Craft, and M. A. Gundersen, Biochem. Biophys. Res. Commun. 310, 286 (2003).
http://dx.doi.org/10.1016/j.bbrc.2003.08.140
25.
J. Zhang, P. F. Blackmore, B. Y. Hargrave, S. Xiao, S. J. Beebe, and K. H. Schoenbach, Arch. Biochem. Biophys. 471, 240 (2008).
http://dx.doi.org/10.1016/j.abb.2007.12.009
26.
A. S. Torres, A. Caiafa, A. L. Garner, S. Klopman, N. LaPlante, C. Morton, K. Conway, A. D. Michelson, A. L. Frelinger, and V. B. Neculaes, J. Trauma Acute Care Surg. 77, S94 (2014).
http://dx.doi.org/10.1097/TA.0000000000000322
27.
N. Grimi, N. Lebovka, E. Vorobiev, and J. Vaxelaire, J. Texture Stud. 40, 208 (2009).
http://dx.doi.org/10.1111/j.1745-4603.2009.00177.x
28.
A. Polak, M. Tarek, M. Tomšič, J. Valant, N. P. Ulrih, A. Jamnik, P. Kramar, and D. Miklavčič, Bioelectrochemistry 100, 18 (2014).
http://dx.doi.org/10.1016/j.bioelechem.2013.12.006
29.
T. Kotnik, W. Frey, M. Sack, S. H. Meglič, M. Peterka, and D. Miklavčič, Trends Biotechnol. 33, 480 (2015).
http://dx.doi.org/10.1016/j.tibtech.2015.06.002
30.
R. Benz, F. Beckers, and U. Zimmermann, J. Membr. Biol. 48, 181 (1979).
http://dx.doi.org/10.1007/BF01872858
31.
J. Teissié and T. Y. Tsong, Biochemistry (Moscow) 20, 1548 (1981).
http://dx.doi.org/10.1021/bi00509a022
32.
H. Aranda-Espinoza, H. Bermudez, F. S. Bates, and D. E. Discher, Phys. Rev. Lett. 87, 208301 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.208301
33.
D. Miklavčič, J. Membr. Biol. 245, 591 (2012).
http://dx.doi.org/10.1007/s00232-012-9493-8
34.
M. L. Yarmush, A. Golberg, G. Serša, T. Kotnik, and D. Miklavčič, Annu. Rev. Biomed. Eng. 16, 295 (2014).
http://dx.doi.org/10.1146/annurev-bioeng-071813-104622
35.
D. E. Spratt, E. A. G. Spratt, S. Wu, A. DeRosa, N. Y. Lee, M. E. Lacouture, and C. A. Barker, J. Clin. Oncol. 32, 3144 (2014).
http://dx.doi.org/10.1200/JCO.2014.55.4634
36.
L. M. Mir, Mol. Biotechnol. 43, 167 (2009).
http://dx.doi.org/10.1007/s12033-009-9192-6
37.
K. E. Broderick and L. M. Humeau, Expert Rev. Vaccines 14, 195 (2015).
http://dx.doi.org/10.1586/14760584.2015.990890
38.
H. J. Scheffer, K. Nielsen, M. C. de Jong, A. A. J. M. van Tilborg, J. M. Vieveen, A. R. A. Bouwman, S. Meijer, C. van Kuijk, P. M. P. van den Tol, and M. R. Meijerink, J. Vasc. Interventional Radiol. 25, 997 (2014).
http://dx.doi.org/10.1016/j.jvir.2014.01.028
39.
J. Lavee, G. Onik, P. Mikus, and B. Rubinsky, Heart Surg. Forum 10, E162 (2007).
http://dx.doi.org/10.1532/HSF98.20061202
40.
K. Neven, V. van Driel, H. van Wessel, R. van Es, B. du Pré, P. A. Doevendans, and F. Wittkampf, Circ.: Arrhythmia Electrophysiol. 7, 913 (2014).
http://dx.doi.org/10.1161/CIRCEP.114.001607
41.
V. J. H. M. van Driel, K. Neven, H. van Wessel, A. Vink, P. A. F. M. Doevendans, and F. H. M. Wittkampf, HeartRhythm 12, 1838 (2015).
http://dx.doi.org/10.1016/j.hrthm.2015.05.012
42.
M. Fincan and P. Dejmek, J. Food Eng. 59, 169 (2003).
http://dx.doi.org/10.1016/S0260-8774(02)00454-5
43.
T. McHugh and S. Toepfl, Food Technol. 70, 73 (2016).
44.
H. Bouzrara and E. Vorobiev, Int. Sugar J. 102, 194 (2000).
45.
H. Bluhm and M. Sack, Electrotechnologies for Extraction from Food Plants and Biomaterials ( Springer, New York, 2009), pp. 237269.
46.
H. Mhemdi, O. Bals, N. Grimi, and E. Vorobiev, Food Bioprocess Technol. 7, 795 (2014).
http://dx.doi.org/10.1007/s11947-013-1103-y
47.
M. Sack, J. Sigler, S. Frenzel, C. Eing, J. Arnold, T. Michelberger, W. Frey, F. Attmann, L. Stukenbrock, and G. Müller, Food Eng. Rev. 2, 147 (2010).
http://dx.doi.org/10.1007/s12393-010-9017-1
48.
X. Yu, O. Bals, N. Grimi, and E. Vorobiev, Ind. Crops Prod. 74, 309 (2015).
http://dx.doi.org/10.1016/j.indcrop.2015.03.045
49.
S. Brianceau, M. Turk, X. Vitrac, and E. Vorobiev, Innovative Food Sci. Emerging Technol. 29, 2 (2015).
http://dx.doi.org/10.1016/j.ifset.2014.07.010
50.
M. Pavlin, M. Kandušer, M. Reberšek, G. Pucihar, F. X. Hart, R. Magjarević, and D. Miklavčič, Biophys. J. 88, 4378 (2005).
http://dx.doi.org/10.1529/biophysj.104.048975
51.
E. M. Dunki-Jacobs, P. Philips, and R. C. G. Martin II, J. Am. Coll. Surg. 218, 179 (2014).
http://dx.doi.org/10.1016/j.jamcollsurg.2013.10.013
52.
K. A. Riske and R. Dimova, Biophys. J. 88, 1143 (2005).
http://dx.doi.org/10.1529/biophysj.104.050310
53.
J. Voldman, Annu. Rev. Biomed. Eng. 8, 425 (2006).
http://dx.doi.org/10.1146/annurev.bioeng.8.061505.095739
54.
J. Teissié and T. Y. Tsong, J. Membr. Biol. 55, 133 (1980).
http://dx.doi.org/10.1007/BF01871155
55.
S. W. I. Siu and R. A. Böckmann, J. Struct. Biol. 157, 545 (2007).
http://dx.doi.org/10.1016/j.jsb.2006.10.005
56.
F. Maglietti, S. Michinski, N. Olaiz, M. Castro, C. Suárez, and G. Marshall, PLoS One 8, e80167 (2013).
http://dx.doi.org/10.1371/journal.pone.0080167
57.
R. Rodaite-Riseviciene, R. Saule, V. Snitka, and G. Saulis, IEEE Trans. Plasma Sci. 42, 249 (2014).
http://dx.doi.org/10.1109/TPS.2013.2287499
58.
D. E. Chafai, A. Mehle, A. Tilmatine, B. Maouche, and D. Miklavčič, Bioelectrochemistry 106(Part B), 249 (2015).
http://dx.doi.org/10.1016/j.bioelechem.2015.08.002
59.
U. Zimmermann, Reviews of Physiology, Biochemistry and Pharmacology ( Springer, Berlin, Heidelberg, 1986), Vol. 105, pp. 175256.
60.
J. Teissié, M. Golzio, and M.-P. Rols, Biochim. Biophys. Acta, Gen. Subj. 1724, 270 (2005).
http://dx.doi.org/10.1016/j.bbagen.2005.05.006
61.
K. Kinosita and T. Y. Tsong, Biochim. Biophys. Acta, Biomembr. 554, 479 (1979).
http://dx.doi.org/10.1016/0005-2736(79)90386-9
62.
M. Hibino, M. Shigemori, H. Itoh, K. Nagayama, and K. Kinosita, Biophys. J. 59, 209 (1991).
http://dx.doi.org/10.1016/S0006-3495(91)82212-3
63.
M. Hibino, H. Itoh, and K. Kinosita, Biophys. J. 64, 1789 (1993).
http://dx.doi.org/10.1016/S0006-3495(93)81550-9
64.
W. Frey, J. A. White, R. O. Price, P. F. Blackmore, R. P. Joshi, R. Nuccitelli, S. J. Beebe, K. H. Schoenbach, and J. F. Kolb, Biophys. J. 90, 3608 (2006).
http://dx.doi.org/10.1529/biophysj.105.072777
65.
J. A. White, U. Pliquett, P. F. Blackmore, R. P. Joshi, K. H. Schoenbach, and J. F. Kolb, Eur. Biophys. J. 40, 947 (2011).
http://dx.doi.org/10.1007/s00249-011-0710-7
66.
M. Pavlin, V. Leben, and D. Miklavčič, Biochim. Biophys. Acta, Gen. Subj. 1770, 12 (2007).
http://dx.doi.org/10.1016/j.bbagen.2006.06.014
67.
G. Pucihar, T. Kotnik, D. Miklavčič, and J. Teissié, Biophys. J. 95, 2837 (2008).
http://dx.doi.org/10.1529/biophysj.108.135541
68.
M. R. Prausnitz, J. D. Corbett, J. A. Gimm, D. E. Golan, R. Langer, and J. C. Weaver, Biophys. J. 68, 1864 (1995).
http://dx.doi.org/10.1016/S0006-3495(95)80363-2
69.
B. Gabriel and J. Teissié, Biophys. J. 76, 2158 (1999).
http://dx.doi.org/10.1016/S0006-3495(99)77370-4
70.
K. Kinosita and T. Y. Tsong, Nature 268, 438 (1977).
http://dx.doi.org/10.1038/268438a0
71.
M. L. Escande-Géraud, M.-P. Rols, M. A. Dupont, N. Gas, and J. Teissié, Biochim. Biophys. Acta 939, 247 (1988).
http://dx.doi.org/10.1016/0005-2736(88)90068-5
72.
A. Lopez, M.-P. Rols, and J. Teissié, Biochemistry (Moscow) 27, 1222 (1988).
http://dx.doi.org/10.1021/bi00404a023
73.
M.-P. Rols and J. Teissié, Biophys. J. 58, 1089 (1990).
http://dx.doi.org/10.1016/S0006-3495(90)82451-6
74.
G. Saulis, M. S. Venslauskas, and J. Naktinis, J. Electroanal. Chem. Interfacial Electrochem. 321, 1 (1991).
http://dx.doi.org/10.1016/0022-0728(91)85564-6
75.
M.-P. Rols and J. Teissié, Biophys. J. 75, 1415 (1998).
http://dx.doi.org/10.1016/S0006-3495(98)74060-3
76.
E. Neumann, K. Toensing, S. Kakorin, P. Budde, and J. Frey, Biophys. J. 74, 98 (1998).
http://dx.doi.org/10.1016/S0006-3495(98)77771-9
77.
A. G. Pakhomov, J. F. Kolb, J. A. White, R. P. Joshi, S. Xiao, and K. H. Schoenbach, Bioelectromagnetics 28, 655 (2007).
http://dx.doi.org/10.1002/bem.20354
78.
C. S. Djuzenova, U. Zimmermann, H. Frank, V. L. Sukhorukov, E. Richter, and G. Fuhr, Biochim. Biophys. Acta, Biomembr. 1284, 143 (1996).
http://dx.doi.org/10.1016/S0005-2736(96)00119-8
79.
R. Shirakashi, V. L. Sukhorukov, I. Tanasawa, and U. Zimmermann, Int. J. Heat Mass Transfer 47, 4517 (2004).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.04.007
80.
M. Kandušer, M. Šentjurc, and D. Miklavčič, Eur. Biophys. J. 35, 196 (2006).
http://dx.doi.org/10.1007/s00249-005-0021-y
81.
G. Saulis and R. Saulė, Biochim. Biophys. Acta, Biomembr. 1818, 3032 (2012).
http://dx.doi.org/10.1016/j.bbamem.2012.06.018
82.
M.-P. Rols, P. Femenia, and J. Teissié, Biochem. Biophys. Res. Commun. 208, 26 (1995).
http://dx.doi.org/10.1006/bbrc.1995.1300
83.
B. Gabriel and J. Teissié, Biochim. Biophys. Acta, Mol. Cell Res. 1266, 171 (1995).
http://dx.doi.org/10.1016/0167-4889(95)00021-J
84.
R. Lin, D. C. Chang, and Y.-K. Lee, Biomed. Microdevices 13, 1063 (2011).
http://dx.doi.org/10.1007/s10544-011-9576-9
85.
D. Gross, L. M. Loew, and W. W. Webb, Biophys. J. 50, 339 (1986).
http://dx.doi.org/10.1016/S0006-3495(86)83467-1
86.
T. Kotnik and G. Pucihar, in Advanced Electroporation Techniques in Biology and Medicine, edited by A. G. Pakhomov, D. Miklavčič, and M. S. Markov ( CRC Press, Boca Raton, 2010), pp. 5170.
87.
B. Gabriel and J. Teissié, Biophys. J. 73, 2630 (1997).
http://dx.doi.org/10.1016/S0006-3495(97)78292-4
88.
T. Kotnik, G. Pucihar, and D. Miklavčič, J. Membr. Biol. 236, 3 (2010).
http://dx.doi.org/10.1007/s00232-010-9279-9
89.
Z. Lojewska, D. L. Farkas, B. Ehrenberg, and L. M. Loew, Biophys. J. 56, 121 (1989).
http://dx.doi.org/10.1016/S0006-3495(89)82657-8
90.
T. Kotnik, F. Bobanović, and D. Miklavčič, Bioelectrochem. Bioenerg. 43, 285 (1997).
http://dx.doi.org/10.1016/S0302-4598(97)00023-8
91.
T. Kotnik and D. Miklavčič, IEEE Trans. Biomed. Eng. 47, 1074 (2000).
http://dx.doi.org/10.1109/10.855935
92.
T. Kotnik and D. Miklavčič, Biophys. J. 79, 670 (2000).
http://dx.doi.org/10.1016/S0006-3495(00)76325-9
93.
G. Pucihar, T. Kotnik, B. Valič, and D. Miklavčič, Ann. Biomed. Eng. 34, 642 (2006).
http://dx.doi.org/10.1007/s10439-005-9076-2
94.
W. Mehrle, U. Zimmermann, and R. Hampp, FEBS Lett. 185, 89 (1985).
http://dx.doi.org/10.1016/0014-5793(85)80746-8
95.
E. Tekle, R. D. Astumian, and P. B. Chock, Biochem. Biophys. Res. Commun. 172, 282 (1990).
http://dx.doi.org/10.1016/S0006-291X(05)80206-2
96.
B. E. Henslee, A. Morss, X. Hu, G. P. Lafyatis, and L. J. Lee, Anal. Chem. 83, 3998 (2011).
http://dx.doi.org/10.1021/ac1019649
97.
S. Sixou and J. Teissié, Biochim. Biophys. Acta 1028, 154 (1990).
http://dx.doi.org/10.1016/0005-2736(90)90149-I
98.
B. Valič, M. Golzio, M. Pavlin, A. Schatz, C. Faurie, B. Gabriel, J. Teissié, M.-P. Rols, and D. Miklavčič, Eur. Biophys. J. 32, 519 (2003).
http://dx.doi.org/10.1007/s00249-003-0296-9
99.
R. Susil, D. Šemrov, and D. Miklavčič, Electro- Magnetobiol. 17, 391 (1998).
http://dx.doi.org/10.3109/15368379809030739
100.
R. Benz and U. Zimmermann, Bioelectrochem. Bioenerg. 7, 723 (1980).
http://dx.doi.org/10.1016/0302-4598(80)80037-7
101.
J. Teissié and M.-P. Rols, Biophys. J. 65, 409 (1993).
http://dx.doi.org/10.1016/S0006-3495(93)81052-X
102.
A. G. Pakhomov, E. Gianulis, P. T. Vernier, I. Semenov, S. Xiao, and O. N. Pakhomova, Biochim. Biophys. Acta, Biomembr. 1848, 958 (2015).
http://dx.doi.org/10.1016/j.bbamem.2014.12.026
103.
L. H. Wegner, W. Frey, and A. Silve, Biophys. J. 108, 1660 (2015).
http://dx.doi.org/10.1016/j.bpj.2015.01.038
104.
A. M. Bowman, O. M. Nesin, O. N. Pakhomova, and A. G. Pakhomov, J. Membr. Biol. 236, 15 (2010).
http://dx.doi.org/10.1007/s00232-010-9269-y
105.
O. M. Nesin, O. N. Pakhomova, S. Xiao, and A. G. Pakhomov, Biochim. Biophys. Acta, Biomembr. 1808, 792 (2011).
http://dx.doi.org/10.1016/j.bbamem.2010.12.012
106.
A. M. Lebar and D. Miklavčič, Radiol. Oncol. 35, 193 (2001).
107.
Z. Vasilkoski, A. T. Esser, T. R. Gowrishankar, and J. C. Weaver, Phys. Rev. E 74, 021904 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.021904
108.
M. Čemazar, T. Jarm, D. Miklavčič, A. Maček-Lebar, A. Ihan, N. A. Kopitar, and G. Serša, Electro- Magnetobiol. 17, 263 (1998).
http://dx.doi.org/10.3109/15368379809022571
109.
U. Zimmermann, G. Pilwat, C. Holzapfel, and K. Rosenheck, J. Membr. Biol. 30, 135 (1976).
http://dx.doi.org/10.1007/BF01869664
110.
U. Zimmermann, M. Groves, H. Schnabl, and G. Pilwat, J. Membr. Biol. 52, 37 (1980).
http://dx.doi.org/10.1007/BF01869004
111.
L. Towhidi, T. Kotnik, G. Pucihar, S. M. P. Firoozabadi, H. Mozdarani, and D. Miklavčič, Electromagn. Biol. Med. 27, 372 (2008).
http://dx.doi.org/10.1080/15368370802394644
112.
M. Puc, T. Kotnik, L. M. Mir, and D. Miklavčič, Bioelectrochemistry 60, 1 (2003).
http://dx.doi.org/10.1016/S1567-5394(03)00021-5
113.
M. Ušaj and M. Kandušer, J. Membr. Biol. 245, 583 (2012).
http://dx.doi.org/10.1007/s00232-012-9470-2
114.
C. S. Djuzenova, V. L. Sukhorukov, G. Klöck, W. M. Arnold, and U. Zimmermann, Cytometry 15, 35 (1994).
http://dx.doi.org/10.1002/cyto.990150107
115.
U. Zimmermann, G. Pilwat, and F. Riemann, Biophys. J. 14, 881 (1974).
http://dx.doi.org/10.1016/S0006-3495(74)85956-4
116.
S. Hojo, K. Shimizu, H. Yositake, M. Muraji, H. Tsujimoto, and W. Tatebe, IEEE Trans. Nanobioscience 2, 35 (2003).
http://dx.doi.org/10.1109/TNB.2003.810156
117.
V. L. Sukhorukov, C. S. Djuzenova, H. Frank, W. M. Arnold, and U. Zimmermann, Cytometry 21, 230 (1995).
http://dx.doi.org/10.1002/cyto.990210303
118.
T. Kotnik and D. Miklavčič, Biophys. J. 90, 480 (2006).
http://dx.doi.org/10.1529/biophysj.105.070771
119.
K. H. Schoenbach, S. J. Beebe, and E. S. Buescher, Bioelectromagnetics 22, 440 (2001).
http://dx.doi.org/10.1002/bem.71
120.
T. B. Napotnik, M. Reberšek, T. Kotnik, E. Lebrasseur, G. Cabodevila, and D. Miklavčič, Med. Biol. Eng. Comput. 48, 407 (2010).
http://dx.doi.org/10.1007/s11517-010-0599-9
121.
K. H. Schoenbach and R. P. Joshi, Crit. Rev. Biomed. Eng. 38, 255 (2010).
http://dx.doi.org/10.1615/CritRevBiomedEng.v38.i3.20
122.
T. B. Napotnik, M. Reberšek, P. T. Vernier, B. Mali, and D. Miklavčič, Bioelectrochemistry 110, 1 (2016).
http://dx.doi.org/10.1016/j.bioelechem.2016.02.011
123.
L. V. Chernomordik, S. I. Sukharev, S. V. Popov, V. F. Pastushenko, A. V. Sokirko, I. G. Abidor, and Y. A. Chizmadzhev, Biochim. Biophys. Acta, Biomembr. 902, 360 (1987).
http://dx.doi.org/10.1016/0005-2736(87)90204-5
124.
A. T. Esser, K. C. Smith, T. R. Gowrishankar, Z. Vasilkoski, and J. C. Weaver, Biophys. J. 98, 2506 (2010).
http://dx.doi.org/10.1016/j.bpj.2010.02.035
125.
K. A. DeBruin and W. Krassowska, Biophys. J. 77, 1213 (1999).
http://dx.doi.org/10.1016/S0006-3495(99)76973-0
126.
T. Kotnik, D. Miklavčič, and L. M. Mir, Bioelectrochemistry 54, 91 (2001).
http://dx.doi.org/10.1016/S1567-5394(01)00115-3
127.
C. Chen, J. A. Evans, M. P. Robinson, S. W. Smye, and P. O'Toole, Phys. Med. Biol. 55, 1219 (2010).
http://dx.doi.org/10.1088/0031-9155/55/4/021
128.
L. Towhidi, S. M. P. Firoozabadi, H. Mozdarani, and D. Miklavčič, Radiol. Oncol. 46, 119 (2012).
http://dx.doi.org/10.2478/v10019-012-0014-2
129.
Z. Shankayi, S. M. P. Firoozabadi, and M. G. Mansurian, Cell Biochem. Biophys. 65, 211 (2013).
http://dx.doi.org/10.1007/s12013-012-9422-6
130.
V. Novickij, A. Grainys, J. Švedienė, S. Markovskaja, A. Paškevičius, and J. Novickij, Bioelectromagnetics 35, 347 (2014).
http://dx.doi.org/10.1002/bem.21848
131.
S. Kranjc, M. Kranjc, J. Scancar, J. Jelenc, G. Sersa, and D. Miklavcic, Radiol. Oncol. 50, 39 (2016).
132.
S. Xiao, S. Guo, V. Nesin, R. Heller, and K. H. Schoenbach, IEEE Trans. Biomed. Eng. 58, 1239 (2011).
http://dx.doi.org/10.1109/TBME.2011.2112360
133.
F. Guo, C. Yao, C. Bajracharya, S. Polisetty, K. H. Schoenbach, and S. Xiao, Bioelectromagnetics 35, 145 (2014).
http://dx.doi.org/10.1002/bem.21825
134.
P. T. Vernier, Z. A. Levine, M.-C. Ho, S. Xiao, I. Semenov, and A. G. Pakhomov, J. Membr. Biol. 248, 837 (2015).
http://dx.doi.org/10.1007/s00232-015-9788-7
135.
K. H. Schoenbach, S. Xiao, R. P. Joshi, J. T. Camp, T. Heeren, J. F. Kolb, and S. J. Beebe, IEEE Trans. Plasma Sci. 36, 414 (2008).
http://dx.doi.org/10.1109/TPS.2008.918786
136.
J. T. Camp, Y. Jing, J. Zhuang, J. F. Kolb, S. J. Beebe, J. Song, R. P. Joshi, S. Xiao, and K. H. Schoenbach, IEEE Trans. Plasma Sci. 40, 2334 (2012).
http://dx.doi.org/10.1109/TPS.2012.2208202
137.
T. Kotnik and D. Miklavčič, Bioelectromagnetics 21, 385 (2000).
http://dx.doi.org/10.1002/1521-186X(200007)21:5<385::AID-BEM7>3.0.CO;2-F
138.
V. F. Pastushenko, Y. A. Chizmadzhev, and V. B. Arakelyan, Bioelectrochem. Bioenerg. 6, 53 (1979).
http://dx.doi.org/10.1016/0302-4598(79)85006-0
139.
L. V. Chernomordik and I. G. Abidor, Bioelectrochem. Bioenerg. 7, 617 (1980).
http://dx.doi.org/10.1016/0302-4598(80)80028-6
140.
R. Benz and U. Zimmermann, Biochim. Biophys. Acta, Biomembr. 640, 169 (1981).
http://dx.doi.org/10.1016/0005-2736(81)90542-3
141.
R. W. Glaser, S. L. Leikin, L. V. Chernomordik, V. F. Pastushenko, and A. I. Sokirko, Biochim. Biophys. Acta 940, 275 (1988).
http://dx.doi.org/10.1016/0005-2736(88)90202-7
142.
K. C. Melikov, V. A. Frolov, A. Shcherbakov, A. V. Samsonov, Y. A. Chizmadzhev, and L. V. Chernomordik, Biophys. J. 80, 1829 (2001).
http://dx.doi.org/10.1016/S0006-3495(01)76153-X
143.
M. Szabo and M. I. Wallace, Biochim. Biophys. Acta, Biomembr. 1858, 613 (2016).
http://dx.doi.org/10.1016/j.bbamem.2015.07.009
144.
S. Kakorin, S. P. Stoylov, and E. Neumann, Biophys. Chem. 58, 109 (1996).
http://dx.doi.org/10.1016/0301-4622(95)00090-9
145.
T. Portet and R. Dimova, Biophys. J. 99, 3264 (2010).
http://dx.doi.org/10.1016/j.bpj.2010.09.032
146.
J. C. Weaver and Y. A. Chizmadzhev, Bioelectrochem. Bioenerg. 41, 135 (1996).
http://dx.doi.org/10.1016/S0302-4598(96)05062-3
147.
M. Pavlin, T. Kotnik, D. Miklavčič, P. Kramar, and A. M. Lebar, in Advances in Planar Lipid Bilayers and Liposomes, edited by A. L. Liu ( Academic Press, 2008), pp. 165226.
148.
D. C. Chang and T. S. Reese, Biophys. J. 58, 1 (1990).
http://dx.doi.org/10.1016/S0006-3495(90)82348-1
149.
D. P. Tieleman, BMC Biochem. 5, 10 (2004).
http://dx.doi.org/10.1186/1471-2091-5-10
150.
M. Tarek, Biophys. J. 88, 4045 (2005).
http://dx.doi.org/10.1529/biophysj.104.050617
151.
P. T. Vernier, Z. A. Levine, and M. A. Gundersen, Proc. IEEE 101, 494 (2013).
http://dx.doi.org/10.1109/JPROC.2012.2222011
152.
M. Tarek and L. Delemotte, in Advanced Electroporation Techniques in Biology and Medicine, edited by A. G. Pakhomov, D. Miklavčič, and M. S. Markov ( CRC Press, Boca Raton, 2010).
153.
A. A. Gurtovenko, J. Anwar, and I. Vattulainen, Chem. Rev. 110, 6077 (2010).
http://dx.doi.org/10.1021/cr1000783
154.
M. J. Ziegler and P. T. Vernier, J. Phys. Chem. B 112, 13588 (2008).
http://dx.doi.org/10.1021/jp8027726
155.
R. A. Böckmann, B. L. de Groot, S. Kakorin, E. Neumann, and H. Grubmüller, Biophys. J. 95, 1837 (2008).
http://dx.doi.org/10.1529/biophysj.108.129437
156.
L. Delemotte and M. Tarek, J. Membr. Biol. 245, 531 (2012).
http://dx.doi.org/10.1007/s00232-012-9434-6
157.
Z. A. Levine and P. T. Vernier, J. Membr. Biol. 236, 27 (2010).
http://dx.doi.org/10.1007/s00232-010-9277-y
158.
F. Dehez, L. Delemotte, P. Kramar, D. Miklavčič, and M. Tarek, J. Phys. Chem. C 118, 6752 (2014).
http://dx.doi.org/10.1021/jp4114865
159.
A. A. Gurtovenko and I. Vattulainen, Biophys. J. 92, 1878 (2007).
http://dx.doi.org/10.1529/biophysj.106.094797
160.
M.-C. Ho, M. Casciola, Z. A. Levine, and P. T. Vernier, J. Phys. Chem. B 117, 11633 (2013).
http://dx.doi.org/10.1021/jp401722g
161.
A. A. Gurtovenko and I. Vattulainen, J. Am. Chem. Soc. 127, 17570 (2005).
http://dx.doi.org/10.1021/ja053129n
162.
A. A. Gurtovenko and I. Vattulainen, in Biomembranes Frontiers, edited by R. Faller, M. L. Longo, S. H. Risbud, and T. Jue ( Humana Press, 2009), pp. 121139.
163.
M. Tokman, J. H. Lee, Z. A. Levine, M.-C. Ho, M. E. Colvin, and P. T. Vernier, PLoS One 8, e61111 (2013).
http://dx.doi.org/10.1371/journal.pone.0061111
164.
Q. Hu, Z. Zhang, H. Qiu, M. G. Kong, and R. P. Joshi, Phys. Rev. E 87, 032704 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.032704
165.
S. K. Kandasamy and R. G. Larson, J. Chem. Phys. 125, 074901 (2006).
http://dx.doi.org/10.1063/1.2217737
166.
A. Polak, D. Bonhenry, F. Dehez, P. Kramar, D. Miklavčič, and M. Tarek, J. Membr. Biol. 246, 843 (2013).
http://dx.doi.org/10.1007/s00232-013-9570-7
167.
A. A. Gurtovenko and A. S. Lyulina, J. Phys. Chem. B 118, 9909 (2014).
http://dx.doi.org/10.1021/jp5028355
168.
M. Breton, L. Delemotte, A. Silve, L. M. Mir, and M. Tarek, J. Am. Chem. Soc. 134, 13938 (2012).
http://dx.doi.org/10.1021/ja3052365
169.
M. L. Fernández, G. Marshall, F. Sagués, and R. Reigada, J. Phys. Chem. B 114, 6855 (2010).
http://dx.doi.org/10.1021/jp911605b
170.
M. Casciola, D. Bonhenry, M. Liberti, F. Apollonio, and M. Tarek, Bioelectrochemistry 100, 11 (2014).
http://dx.doi.org/10.1016/j.bioelechem.2014.03.009
171.
T. J. Piggot, D. A. Holdbrook, and S. Khalid, J. Phys. Chem. B 115, 13381 (2011).
http://dx.doi.org/10.1021/jp207013v
172.
Z. A. Levine and P. T. Vernier, J. Membr. Biol. 245, 599 (2012).
http://dx.doi.org/10.1007/s00232-012-9471-1
173.
R. Reigada, Biochim. Biophys. Acta, Biomembr. 1838, 814 (2014).
http://dx.doi.org/10.1016/j.bbamem.2013.10.008
174.
J. Teissié and C. Ramos, Biophys. J. 74, 1889 (1998).
http://dx.doi.org/10.1016/S0006-3495(98)77898-1
175.
T. Kotnik, G. Pucihar, M. Reberšek, D. Miklavčič, and L. M. Mir, Biochim. Biophys. Acta, Biomembr. 1614, 193 (2003).
http://dx.doi.org/10.1016/S0005-2736(03)00173-1
176.
M. R. Prausnitz, B. S. Lau, C. D. Milano, S. Conner, R. Langer, and J. C. Weaver, Biophys. J. 65, 414 (1993).
http://dx.doi.org/10.1016/S0006-3495(93)81081-6
177.
M. R. Prausnitz, C. D. Milano, J. A. Gimm, R. Langer, and J. C. Weaver, Biophys. J. 66, 1522 (1994).
http://dx.doi.org/10.1016/S0006-3495(94)80943-9
178.
P. J. Canatella, J. F. Karr, J. A. Petros, and M. R. Prausnitz, Biophys. J. 80, 755 (2001).
http://dx.doi.org/10.1016/S0006-3495(01)76055-9
179.
P. J. Canatella and M. R. Prausnitz, Gene Ther. 8, 1464 (2001).
http://dx.doi.org/10.1038/sj.gt.3301547
180.
B. Gabriel and J. Teissié, Bioelectrochem. Bioenerg. 47, 113 (1998).
http://dx.doi.org/10.1016/S0302-4598(98)00174-3
181.
J.-M. Escoffre, T. Portet, C. Favard, J. Teissié, D. S. Dean, and M.-P. Rols, Biochim. Biophys. Acta, Biomembr. 1808, 1538 (2011).
http://dx.doi.org/10.1016/j.bbamem.2010.10.009
182.
A. Paganin-Gioanni, E. Bellard, J.-M. Escoffre, M.-P. Rols, J. Teissié, and M. Golzio, Proc. Natl. Acad. Sci. U.S.A. 108, 10443 (2011).
http://dx.doi.org/10.1073/pnas.1103519108
183.
D. S. Dimitrov and A. E. Sowers, Biochim. Biophys. Acta 1022, 381 (1990).
http://dx.doi.org/10.1016/0005-2736(90)90289-Z
184.
J. Li and H. Lin, Bioelectrochemistry 82, 10 (2011).
http://dx.doi.org/10.1016/j.bioelechem.2011.04.006
185.
K. C. Smith and J. C. Weaver, Biochem. Biophys. Res. Commun. 412, 8 (2011).
http://dx.doi.org/10.1016/j.bbrc.2011.06.171
186.
H. Krassen, U. Pliquett, and E. Neumann, Bioelectrochemistry 70, 71 (2007).
http://dx.doi.org/10.1016/j.bioelechem.2006.03.033
187.
E. Tekle, R. D. Astumian, and P. B. Chock, Proc. Natl. Acad. Sci. 91, 11512 (1994).
http://dx.doi.org/10.1073/pnas.91.24.11512
188.
K. Kinosita, H. Itoh, S. Ishiwata, K. Hirano, T. Nishizaka, and T. Hayakawa, J. Cell Biol. 115, 67 (1991).
http://dx.doi.org/10.1083/jcb.115.1.67
189.
I. Semenov, C. Zemlin, O. N. Pakhomova, S. Xiao, and A. G. Pakhomov, Biochim. Biophys. Acta, Biomembr. 1848, 2118 (2015).
http://dx.doi.org/10.1016/j.bbamem.2015.06.018
190.
T. R. Gowrishankar, A. T. Esser, Z. Vasilkoski, K. C. Smith, and J. C. Weaver, Biochem. Biophys. Res. Commun. 341, 1266 (2006).
http://dx.doi.org/10.1016/j.bbrc.2006.01.094
191.
P. T. Vernier, Y. Sun, and M. A. Gundersen, BMC Cell Biol. 7, 37 (2006).
http://dx.doi.org/10.1186/1471-2121-7-37
192.
M.-P. Rols and J. Teissié, Eur. J. Biochem. 179, 109 (1989).
http://dx.doi.org/10.1111/j.1432-1033.1989.tb14527.x
193.
K. J. Müller, V. L. Sukhorukov, and U. Zimmermann, J. Membr. Biol. 184, 161 (2001).
http://dx.doi.org/10.1007/s00232-001-0084-3
194.
J. Li, W. Tan, M. Yu, and H. Lin, Biochim. Biophys. Acta 1828, 461 (2013).
http://dx.doi.org/10.1016/j.bbamem.2012.08.014
195.
M. Golzio, J. Teissié, and M.-P. Rols, Proc. Natl. Acad. Sci. U.S.A 99, 1292 (2002).
http://dx.doi.org/10.1073/pnas.022646499
196.
M. Pavlin and M. Kandušer, Sci. Rep. 5, 9132 (2015).
http://dx.doi.org/10.1038/srep09132
197.
M. Kandušer, D. Miklavčič, and M. Pavlin, Bioelectrochemistry 74, 265 (2009).
http://dx.doi.org/10.1016/j.bioelechem.2008.09.002
198.
S. Haberl, M. Kandušer, K. Flisar, D. Hodžić, V. B. Bregar, D. Miklavčič, J.-M. Escoffre, M.-P. Rols, and M. Pavlin, J. Gene Med. 15, 169 (2013).
http://dx.doi.org/10.1002/jgm.2706
199.
C. Rosazza, J.-M. Escoffre, A. Zumbusch, and M.-P. Rols, Mol. Ther. 19, 913 (2011).
http://dx.doi.org/10.1038/mt.2010.303
200.
M. Wu and F. Yuan, PLoS One 6, e20923 (2011).
http://dx.doi.org/10.1371/journal.pone.0020923
201.
C. Rosazza, E. Phez, J.-M. Escoffre, L. Cézanne, A. Zumbusch, and M.-P. Rols, Int. J. Pharm. 423, 134 (2012).
http://dx.doi.org/10.1016/j.ijpharm.2011.05.024
202.
B. Markelc, E. Skvarca, T. Dolinsek, V. P. Kloboves, A. Coer, G. Sersa, and M. Cemazar, Bioelectrochemistry 103, 111 (2015).
http://dx.doi.org/10.1016/j.bioelechem.2014.08.020
203.
C. Sun, Z. Cao, M. Wu, and C. Lu, Anal. Chem. 86, 11403 (2014).
http://dx.doi.org/10.1021/ac503363m
204.
C. G. Pack, M. R. Song, E. L. Tae, M. Hiroshima, K. H. Byun, J. S. Kim, and Y. Sako, J. Controlled Release 163, 315 (2012).
http://dx.doi.org/10.1016/j.jconrel.2012.07.036
205.
M. Glogauer, W. Lee, and C. A. G. McCulloch, Exp. Cell Res. 208, 232 (1993).
http://dx.doi.org/10.1006/excr.1993.1242
206.
Y. Rosemberg and R. Korenstein, Bioelectrochem. Bioenerg. 42, 275 (1997).
http://dx.doi.org/10.1016/S0302-4598(96)05107-0
207.
Y. Antov, A. Barbul, and R. Korenstein, Exp. Cell Res. 297, 348 (2004).
http://dx.doi.org/10.1016/j.yexcr.2004.03.027
208.
N. Mahrour, R. Pologea-Moraru, M. G. Moisescu, S. Orlowski, P. Levêque, and L. M. Mir, Biochim. Biophys. Acta, Biomembr. 1668, 126 (2005).
http://dx.doi.org/10.1016/j.bbamem.2004.11.015
209.
N. Ben-Dov, I. R. Grinberg, and R. Korenstein, PLoS One 7, e50299 (2012).
http://dx.doi.org/10.1371/journal.pone.0050299
210.
W. Krassowska and P. D. Filev, Biophys. J. 92, 404 (2007).
http://dx.doi.org/10.1529/biophysj.106.094235
211.
A. M. Lebar, G. C. Troiano, L. Tung, and D. Miklavčič, IEEE Trans. Nanobioscience 1, 116 (2002).
http://dx.doi.org/10.1109/TNB.2003.809464
212.
M. Kotulska, J. Basalyga, M. B. Derylo, and P. Sadowski, J. Membr. Biol. 236, 37 (2010).
http://dx.doi.org/10.1007/s00232-010-9285-y
213.
M. Pavlin and D. Miklavčič, Bioelectrochemistry 74, 38 (2008).
http://dx.doi.org/10.1016/j.bioelechem.2008.04.016
214.
M. Schmeer, T. Seipp, U. Pliquett, S. Kakorin, and E. Neumann, Phys. Chem. Chem. Phys. 6, 5564 (2004).
http://dx.doi.org/10.1039/b411037d
215.
I. P. Sugar and E. Neumann, Biophys. Chem. 19, 211 (1984).
http://dx.doi.org/10.1016/0301-4622(84)87003-9
216.
I. P. Sugar, W. Förster, and E. Neumann, Biophys. Chem. 26, 321 (1987).
http://dx.doi.org/10.1016/0301-4622(87)80033-9
217.
J. C. Shillcock and U. Seifert, Biophys. J. 74, 1754 (1998).
http://dx.doi.org/10.1016/S0006-3495(98)77886-5
218.
M. Fošnarič, V. Kralj-Iglič, K. Bohinc, A. Iglič, and S. May, J. Phys. Chem. B 107, 12519 (2003).
http://dx.doi.org/10.1021/jp035035a
219.
K. C. Smith, J. C. Neu, and W. Krassowska, Biophys. J. 86, 2813 (2004).
http://dx.doi.org/10.1016/S0006-3495(04)74334-9
220.
R. P. Joshi and Q. Hu, IEEE Trans. Plasma Sci. 40, 2355 (2012).
http://dx.doi.org/10.1109/TPS.2012.2184805
221.
J. Teissié and M.-P. Rols, Ann. N. Y. Acad. Sci. 720, 98 (1994).
http://dx.doi.org/10.1111/j.1749-6632.1994.tb30438.x
222.
M. Leguèbe, A. Silve, L. M. Mir, and C. Poignard, J. Theor. Biol. 360, 83 (2014).
http://dx.doi.org/10.1016/j.jtbi.2014.06.027
223.
M.-P. Rols and J. Teissié, Biochim. Biophys. Acta, Biomembr. 1111, 45 (1992).
http://dx.doi.org/10.1016/0005-2736(92)90272-N
224.
E. Niki, Y. Yoshida, Y. Saito, and N. Noguchi, Biochem. Biophys. Res. Commun. 338, 668 (2005).
http://dx.doi.org/10.1016/j.bbrc.2005.08.072
225.
A. Reis and C. M. Spickett, Biochim. Biophys. Acta, Biomembr. 1818, 2374 (2012).
http://dx.doi.org/10.1016/j.bbamem.2012.02.002
226.
P. Jurkiewicz, A. Olżyńska, L. Cwiklik, E. Conte, P. Jungwirth, F. M. Megli, and M. Hof, Biochim. Biophys. Acta, Biomembr. 1818, 2388 (2012).
http://dx.doi.org/10.1016/j.bbamem.2012.05.020
227.
J. Wong-ekkabut, Z. Xu, W. Triampo, I.-M. Tang, D. P. Tieleman, and L. Monticelli, Biophys. J. 93, 4225 (2007).
http://dx.doi.org/10.1529/biophysj.107.112565
228.
V. Jarerattanachat, M. Karttunen, and J. Wong-ekkabut, J. Phys. Chem. B 117, 8490 (2013).
http://dx.doi.org/10.1021/jp4040612
229.
K. A. Runas and N. Malmstadt, Soft Matter 11, 499 (2015).
http://dx.doi.org/10.1039/C4SM01478B
230.
P. Boonnoy, V. Jarerattanachat, M. Karttunen, and J. Wong-ekkabut, J. Phys. Chem. Lett. 6, 4884 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b02405
231.
B. Gabriel and J. Teissié, Eur. J. Biochem. 223, 25 (1994).
http://dx.doi.org/10.1111/j.1432-1033.1994.tb18962.x
232.
B. Gabriel and J. Teissié, Eur. J. Biochem. 228, 710 (1995).
http://dx.doi.org/10.1111/j.1432-1033.1995.tb20314.x
233.
L. C. Benov, P. A. Antonov, and S. R. Ribarov, Gen. Physiol. Biophys. 13, 85 (1994).
234.
M. Maccarrone, N. Rosato, and A. F. Agro, Biochem. Biophys. Res. Commun. 206, 238 (1995).
http://dx.doi.org/10.1006/bbrc.1995.1033
235.
M. Maccarrone, M. R. Bladergroen, N. Rosato, and A. F. Agro, Biochem. Biophys. Res. Commun. 209, 417 (1995).
http://dx.doi.org/10.1006/bbrc.1995.1519
236.
O. N. Pakhomova, V. A. Khorokhorina, A. M. Bowman, R. Rodaitė-Riševičienė, G. Saulis, S. Xiao, and A. G. Pakhomov, Arch. Biochem. Biophys. 527, 55 (2012).
http://dx.doi.org/10.1016/j.abb.2012.08.004
237.
K. Walker, O. N. Pakhomova, J. Kolb, K. S. Schoenbach, B. E. Stuck, M. R. Murphy, and A. G. Pakhomov, Bioelectromagnetics 27, 221 (2006).
http://dx.doi.org/10.1002/bem.20200
238.
P. T. Vernier, Z. A. Levine, Y.-H. Wu, V. Joubert, M. J. Ziegler, L. M. Mir, and D. P. Tieleman, PLoS One 4, e7966 (2009).
http://dx.doi.org/10.1371/journal.pone.0007966
239.
M.-P. Rols, C. Delteil, M. Golzio, and J. Teissié, Eur. J. Biochem. 254, 382 (1998).
http://dx.doi.org/10.1046/j.1432-1327.1998.2540382.x
240.
M.-P. Rols and J. Teissié, Biochemistry (Moscow) 29, 4561 (1990).
http://dx.doi.org/10.1021/bi00471a009
241.
M.-P. Rols, F. Dahhou, K. P. Mishra, and J. Teissié, Biochemistry (Moscow) 29, 2960 (1990).
http://dx.doi.org/10.1021/bi00464a011
242.
G. V. Gass and L. V. Chernomordik, Biochim. Biophys. Acta, Biomembr. 1023, 1 (1990).
http://dx.doi.org/10.1016/0005-2736(90)90002-6
243.
O. N. Pakhomova, B. W. Gregory, V. A. Khorokhorina, A. M. Bowman, S. Xiao, and A. G. Pakhomov, PLoS One 6, e17100 (2011).
http://dx.doi.org/10.1371/journal.pone.0017100
244.
O. N. Pakhomova, B. W. Gregory, and A. G. Pakhomov, J. Cell. Mol. Med. 17, 154 (2013).
http://dx.doi.org/10.1111/j.1582-4934.2012.01658.x
245.
A. Silve, A. G. Brunet, B. Al-Sakere, A. Ivorra, and L. M. Mir, Biochim. Biophys. Acta, Gen. Subj. 1840, 2139 (2014).
http://dx.doi.org/10.1016/j.bbagen.2014.02.011
246.
C. Jiang, Z. Qin, and J. Bischof, Ann. Biomed. Eng. 42, 193 (2014).
http://dx.doi.org/10.1007/s10439-013-0882-7
247.
C. Jiang, Q. Shao, and J. Bischof, Ann. Biomed. Eng. 43, 887 (2015).
http://dx.doi.org/10.1007/s10439-014-1133-2
248.
Y. Demiryurek, M. Nickaeen, M. Zheng, M. Yu, J. D. Zahn, D. I. Shreiber, H. Lin, and J. W. Shan, Biochim. Biophys. Acta, Biomembr. 1848, 1706 (2015).
http://dx.doi.org/10.1016/j.bbamem.2015.04.007
249.
P. L. McNeil and R. A. Steinhardt, Annu. Rev. Cell Dev. Biol. 19, 697 (2003).
http://dx.doi.org/10.1146/annurev.cellbio.19.111301.140101
250.
P. L. McNeil and T. Kirchhausen, Nat. Rev. Mol. Cell Biol. 6, 499 (2005).
http://dx.doi.org/10.1038/nrm1665
251.
C. Huynh, D. Roth, D. M. Ward, J. Kaplan, and N. W. Andrews, Proc. Natl. Acad. Sci. U.S.A. 101, 16795 (2004).
http://dx.doi.org/10.1073/pnas.0405905101
252.
A. J. Jimenez, P. Maiuri, J. Lafaurie-Janvore, S. Divoux, M. Piel, and F. Perez, Science 343, 1247136 (2014).
http://dx.doi.org/10.1126/science.1247136
253.
A. Sharei, R. Poceviciute, E. L. Jackson, N. Cho, S. Mao, G. C. Hartoularos, D. Y. Jang, S. Jhunjhunwala, A. Eyerman, T. Schoettle, R. Langer, and K. F. Jensen, Integr. Biol. 6, 470 (2014).
http://dx.doi.org/10.1039/C3IB40215K
254.
C. Blangero and J. Teissié, J. Membr. Biol. 86, 247 (1985).
http://dx.doi.org/10.1007/BF01870604
255.
B. E. Henslee, A. Morss, X. Hu, G. P. Lafyatis, and L. J. Lee, Biomicrofluidics 8, 052002 (2014).
http://dx.doi.org/10.1063/1.4893918
256.
E. Barrera-Escorcia, A. Muñóz-Torres, A. Vilches-Flores, M. Fregoso-Padilla, J. Martínez-Aguilar, I. Castillo-Padilla, A. Vargas-Vera, J. D. Méndez, M. Betancourt-Rule, and R. Román-Ramos, Biomed. Pharmacother. 59, 275 (2005).
http://dx.doi.org/10.1016/j.biopha.2004.11.011
257.
E. W. M. Kemna, F. Wolbers, I. Vermes, and A. van den Berg, Electrophoresis 32, 3138 (2011).
http://dx.doi.org/10.1002/elps.201100227
258.
N. Hu, J. Yang, S. W. Joo, A. N. Banerjee, and S. Qian, Sens. Actuators, B 178, 63 (2013).
http://dx.doi.org/10.1016/j.snb.2012.12.034
259.
W. Mehrle, R. Hampp, and U. Zimmermann, Biochim. Biophys. Acta, Biomembr. 978, 267 (1989).
http://dx.doi.org/10.1016/0005-2736(89)90124-7
260.
W. Mehrle, R. Hampp, U. Zimmermann, and H. P. Schwan, Biochim. Biophys. Acta, Biomembr. 939, 561 (1988).
http://dx.doi.org/10.1016/0005-2736(88)90103-4
261.
L. Rems, M. Ušaj, M. Kandušer, M. Reberšek, D. Miklavčič, and G. Pucihar, Sci. Rep. 3, 3382 (2013).
http://dx.doi.org/10.1038/srep03382
262.
K. Trontelj, M. Reberšek, M. Kandušer, V. Č. Šerbec, M. Šprohar, and D. Miklavčič, Bioelectrochemistry 74, 124 (2008).
http://dx.doi.org/10.1016/j.bioelechem.2008.06.003
263.
A. E. Sowers, J. Cell Biol. 102, 1358 (1986).
http://dx.doi.org/10.1083/jcb.102.4.1358
264.
J. Teissié and M.-P. Rols, Biochem. Biophys. Res. Commun. 140, 258 (1986).
http://dx.doi.org/10.1016/0006-291X(86)91084-3
265.
M. Ušaj, K. Flisar, D. Miklavčič, and M. Kandušer, Bioelectrochemistry 89, 34 (2013).
http://dx.doi.org/10.1016/j.bioelechem.2012.09.001
266.
M. Pavlin, N. Pavšelj, and D. Miklavčič, IEEE Trans. Biomed. Eng. 49, 605 (2002).
http://dx.doi.org/10.1109/TBME.2002.1001975
267.
M. E. Mezeme, G. Pucihar, M. Pavlin, C. Brosseau, and D. Miklavčič, Appl. Phys. Lett. 100, 143701 (2012).
http://dx.doi.org/10.1063/1.3700727
268.
G. Pucihar, T. Kotnik, J. Teissié, and D. Miklavčič, Eur. Biophys. J. 36, 173 (2007).
http://dx.doi.org/10.1007/s00249-006-0115-1
269.
M. E. Mezeme, M. Kranjc, F. Bajd, I. Serša, C. Brosseau, and D. Miklavčič, Appl. Phys. Lett. 101, 213702 (2012).
http://dx.doi.org/10.1063/1.4767450
270.
I. G. Abidor, A. I. Barbul, D. V. Zhelev, P. Doinov, I. N. Bandrina, E. M. Osipova, and S. I. Sukharev, Biochim. Biophys. Acta, Biomembr. 1152, 207 (1993).
http://dx.doi.org/10.1016/0005-2736(93)90251-T
271.
I. G. Abidor, L. H. Li, and S. W. Hui, Biophys. J. 67, 418 (1994).
http://dx.doi.org/10.1016/S0006-3495(94)80497-7
272.
H. Mekid and L. M. Mir, Biochim. Biophys. Acta, Gen. Subj. 1524, 118 (2000).
http://dx.doi.org/10.1016/S0304-4165(00)00145-8
273.
T. Kotnik, G. Pucihar, and D. Miklavčič, in Clinical Aspects of Electroporation, edited by S. T. Kee, J. Gehl, and E. W. Lee ( Springer, New York, 2011), pp. 1929.
274.
R. M. Sutherland, Science 240, 177 (1988).
http://dx.doi.org/10.1126/science.2451290
275.
M. T. Santini, G. Rainaldi, and P. L. Indovina, Crit. Rev. Oncol. Hematol. 36, 75 (2000).
http://dx.doi.org/10.1016/S1040-8428(00)00078-0
276.
P. J. Canatella, M. M. Black, D. M. Bonnichsen, C. McKenna, and M. R. Prausnitz, Biophys. J. 86, 3260 (2004).
http://dx.doi.org/10.1016/S0006-3495(04)74374-X
277.
L. Gibot, L. Wasungu, J. Teissié, and M.-P. Rols, J. Controlled Release 167, 138 (2013).
http://dx.doi.org/10.1016/j.jconrel.2013.01.021
278.
L. Gibot and M.-P. Rols, J. Membr. Biol. 246, 745 (2013).
http://dx.doi.org/10.1007/s00232-013-9535-x
279.
L. Chopinet, L. Wasungu, and M.-P. Rols, Int. J. Pharm. 423, 7 (2012).
http://dx.doi.org/10.1016/j.ijpharm.2011.04.054
280.
L. Wasungu, J.-M. Escoffre, A. Valette, J. Teissié, and M.-P. Rols, Int. J. Pharm. 379, 278 (2009).
http://dx.doi.org/10.1016/j.ijpharm.2009.03.035
281.
B. Marrero and R. Heller, Biomaterials 33, 3036 (2012).
http://dx.doi.org/10.1016/j.biomaterials.2011.12.049
282.
P. A. Garcia, R. V. Davalos, and D. Miklavčič, PLoS One 9, e103083 (2014).
http://dx.doi.org/10.1371/journal.pone.0103083
283.
R. E. Neal, J. L. Millar, H. Kavnoudias, P. Royce, F. Rosenfeldt, A. Pham, R. Smith, R. V. Davalos, and K. R. Thomson, Prostate 74, 458 (2014).
http://dx.doi.org/10.1002/pros.22760
284.
G. Serša, T. Jarm, T. Kotnik, A. Coer, M. Podkrajšek, M. Šentjurc, D. Miklavčič, M. Kadivec, S. Kranjc, A. Secerov, and M. Čemažar, Br. J. Cancer 98, 388 (2008).
http://dx.doi.org/10.1038/sj.bjc.6604168
285.
S. Huclova, D. Erni, and J. Fröhlich, J. Phys. D: Appl. Phys. 43, 365405 (2010).
http://dx.doi.org/10.1088/0022-3727/43/36/365405
286.
S. Huclova, D. Baumann, M. S. Talary, and J. Fröhlich, Phys. Med. Biol. 56, 7777 (2011).
http://dx.doi.org/10.1088/0031-9155/56/24/007
287.
S. Huclova, D. Erni, and J. Fröhlich, J. Phys. D: Appl. Phys. 45, 025301 (2012).
http://dx.doi.org/10.1088/0022-3727/45/2/025301
288.
S. Gabriel, R. W. Lau, and C. Gabriel, Phys. Med. Biol. 41, 2251 (1996).
http://dx.doi.org/10.1088/0031-9155/41/11/002
289.
D. Miklavčič, D. Šemrov, H. Mekid, and L. M. Mir, Biochim. Biophys. Acta 1523, 73 (2000).
http://dx.doi.org/10.1016/S0304-4165(00)00101-X
290.
D. Šel, D. Cukjati, D. Batiuskaite, T. Slivnik, L. M. Mir, and D. Miklavčič, IEEE Trans. Biomed. Eng. 52, 816 (2005).
http://dx.doi.org/10.1109/TBME.2005.845212
291.
R. E. Neal, P. A. Garcia, J. L. Robertson, and R. V. Davalos, IEEE Trans. Biomed. Eng. 59, 1076 (2012).
http://dx.doi.org/10.1109/TBME.2012.2182994
292.
S. Corovic, I. Lackovic, P. Sustaric, T. Sustar, T. Rodic, and D. Miklavcic, Biomed. Eng. OnLine 12, 16 (2013).
http://dx.doi.org/10.1186/1475-925X-12-16
293.
R. E. Neal, P. A. Garcia, H. Kavnoudias, F. Rosenfeldt, C. A. Mclean, V. Earl, J. Bergman, R. V. Davalos, and K. R. Thomson, IEEE Trans. Biomed. Eng. 62, 561 (2015).
http://dx.doi.org/10.1109/TBME.2014.2360374
294.
S. P. Bhonsle, C. B. Arena, D. C. Sweeney, and R. V. Davalos, Biomed. Eng. OnLine 14, S3 (2015).
http://dx.doi.org/10.1186/1475-925X-14-S3-S3
295.
R. V. Davalos, B. Rubinsky, and D. M. Otten, IEEE Trans. Biomed. Eng. 49, 400 (2002).
http://dx.doi.org/10.1109/10.991168
296.
R. V. Davalos, D. M. Otten, L. M. Mir, and B. Rubinsky, IEEE Trans. Biomed. Eng. 51, 761 (2004).
http://dx.doi.org/10.1109/TBME.2004.824148
297.
Y. Granot, A. Ivorra, E. Maor, and B. Rubinsky, Phys. Med. Biol. 54, 4927 (2009).
http://dx.doi.org/10.1088/0031-9155/54/16/006
298.
M. Kranjc, B. Markelc, F. Bajd, M. Čemažar, I. Serša, T. Blagus, and D. Miklavčič, Radiology 274, 115 (2015).
http://dx.doi.org/10.1148/radiol.14140311
299.
M. Kranjc, F. Bajd, I. Serša, M. de Boevere, and D. Miklavčič, “ Electric field distribution in relation to cell membrane electroporation in potato tuber tissue studied by magnetic resonance techniques,” Innovative Food Sci. Emerging Technol. (published online).
http://dx.doi.org/10.1016/j.ifset.2016.03.002
300.
M. Khine, A. Lau, C. Ionescu-Zanetti, J. Seo, and L. P. Lee, Lab Chip 5, 38 (2005).
http://dx.doi.org/10.1039/b408352k
301.
M. Khine, C. Ionescu-Zanetti, A. Blatz, L.-P. Wang, and L. P. Lee, Lab Chip 7, 457 (2007).
http://dx.doi.org/10.1039/b614356c
302.
R. Ziv, Y. Steinhardt, G. Pelled, D. Gazit, and B. Rubinsky, Biomed. Microdevices 11, 95 (2009).
http://dx.doi.org/10.1007/s10544-008-9213-4
303.
T. Geng and C. Lu, Lab Chip 13, 3803 (2013).
http://dx.doi.org/10.1039/C3LC50566A
304.
S. Huang, Y. Zu, and S. Wang, in Electroporation Protocols, edited by S. Li, J. Cutrera, R. Heller, and J. Teissié ( Springer, New York, 2014), pp. 6977.
305.
S. Huang, H. Deshmukh, K. K. Rajagopalan, and S. Wang, Electrophoresis 35, 1837 (2014).
http://dx.doi.org/10.1002/elps.201300617
306.
P. E. Boukany, A. Morss, W. Liao, B. Henslee, H. Jung, X. Zhang, B. Yu, X. Wang, Y. Wu, L. Li, K. Gao, X. Hu, X. Zhao, O. Hemminger, W. Lu, G. P. Lafyatis, and L. J. Lee, Nat. Nanotechnol. 6, 747 (2011).
http://dx.doi.org/10.1038/nnano.2011.164
307.
P. E. Boukany, Y. Wu, X. Zhao, K. J. Kwak, P. J. Glazer, K. Leong, and L. J. Lee, Adv. Healthcare Mater. 3, 682 (2014).
http://dx.doi.org/10.1002/adhm.201300213
308.
K. Gao, L. Li, L. He, K. Hinkle, Y. Wu, J. Ma, L. Chang, X. Zhao, D. G. Perez, S. Eckardt, J. Mclaughlin, B. Liu, D. F. Farson, and L. J. Lee, Small 10, 1015 (2014).
http://dx.doi.org/10.1002/smll.201300116
309.
X. Xie, A. M. Xu, S. Leal-Ortiz, Y. Cao, C. C. Garner, and N. A. Melosh, ACS Nano 7, 4351 (2013).
http://dx.doi.org/10.1021/nn400874a
310.
C. Xie, Z. Lin, L. Hanson, Y. Cui, and B. Cui, Nat. Nanotechnol. 7, 185 (2012).
http://dx.doi.org/10.1038/nnano.2012.8
311.
R. Guduru, P. Liang, C. Runowicz, M. Nair, V. Atluri, and S. Khizroev, Sci. Rep. 3, 2953 (2013).
http://dx.doi.org/10.1038/srep02953
312.
D. T. Schoen, A. P. Schoen, L. Hu, H. S. Kim, S. C. Heilshorn, and Y. Cui, Nano Lett. 10, 3628 (2010).
http://dx.doi.org/10.1021/nl101944e
313.
C. Liu, X. Xie, W. Zhao, N. Liu, P. A. Maraccini, L. M. Sassoubre, A. B. Boehm, and Y. Cui, Nano Lett. 13, 4288 (2013).
http://dx.doi.org/10.1021/nl402053z
314.
C. Liu, X. Xie, W. Zhao, J. Yao, D. Kong, A. B. Boehm, and Y. Cui, Nano Lett. 14, 5603 (2014).
http://dx.doi.org/10.1021/nl5020958
315.
G. Yanai, T. Hayashi, Q. Zhi, K.-C. Yang, Y. Shirouzu, T. Shimabukuro, A. Hiura, K. Inoue, and S. Sumi, PLoS One 8, e64499 (2013).
http://dx.doi.org/10.1371/journal.pone.0064499
316.
F. Gouaillier-Vulcain, E. Marchand, R. Martinez, J. Picquet, and B. Enon, Ann. Vasc. Surg. 29, 801 (2015).
http://dx.doi.org/10.1016/j.avsg.2014.09.034
317.
S. Shayanfar, O. P. Chauhan, S. Toepfl, and V. Heinz, Int. J. Food Sci. Technol. 49, 1224 (2014).
http://dx.doi.org/10.1111/ijfs.12421
318.
K. Dymek, L. Rems, B. Zorec, P. Dejmek, F. G. Galindo, and D. Miklavčič, Innovative Food Sci. Emerging Technol. 29, 55 (2015).
http://dx.doi.org/10.1016/j.ifset.2014.08.006
319.
B. Kos, P. Voigt, D. Miklavčič, and M. Moche, Radiol. Oncol. 49, 234 (2015).
http://dx.doi.org/10.1515/raon-2015-0031
320.
P. Y. Phoon, F. G. Galindo, A. A. Vicente, and P. Dejmek, J. Food Engi. 88, 144 (2008).
http://dx.doi.org/10.1016/j.jfoodeng.2007.12.016
http://aip.metastore.ingenta.com/content/aip/journal/jap/119/20/10.1063/1.4949264
Loading
/content/aip/journal/jap/119/20/10.1063/1.4949264
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/119/20/10.1063/1.4949264
2016-05-23
2016-09-27

Abstract

Electroporation is being successfully used in biology, medicine, food processing, and biotechnology, and in some environmental applications. Recent applications also include in addition to classical electroporation, where cells are exposed to micro- or milliseconds long pulses, exposures to extremely short nanosecond pulses, i.e., high-frequency electroporation. Electric pulses are applied to cells in different structural configurations ranging from suspended cells to cells in tissues. Understanding electroporation of cells in tissues and other complex environments is a key to its successful use and optimization in various applications. Thus, explanation will be provided theoretically/numerically with relation to experimental observations by scaling our understanding of electroporation from the molecular level of the cell membrane up to the tissue level.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/119/20/1.4949264.html;jsessionid=pDGP0BJyu5dzSAJTHDXAaOiY.x-aip-live-03?itemId=/content/aip/journal/jap/119/20/10.1063/1.4949264&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/119/20/10.1063/1.4949264&pageURL=http://scitation.aip.org/content/aip/journal/jap/119/20/10.1063/1.4949264'
Right1,Right2,Right3,