Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
L. J. Geerligs, P. Manshanden, I. Solheim, E. J. Ovrelid, and A. N. Waernes, in Proceedings of the 21st European Photovoltaic Solar Energy Conference and Exhibition (2006), p. 1285.
A. Edler, J. Jourdan, V. D. Mihailetchi, R. Kopecek, R. Harney, D. Stichtenoth, T. Aichele, A. Grochocki, and J. Lossen, in Proceedings of the 25th European Photovoltaic Solar Energy Conference and Exhibition (2010), p. 1905.
S. Nishimura, T. Watahiki, D. Niinobe, T. Hayashida, Y. Yuda, S. Kano, K. Nishimura, H. Tokioka, and M. Yamamuka, “ Over 21% Efficiency of n-Type Monocrystalline Silicon PERT Photovoltaic Cell With Boron Emitter,” IEEE J. Photovoltaics (to be published).
M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, IEEE J. Photovoltaics 4, 96 (2014).
T. Watahiki, T. Furuhata, T. Matsuura, T. Shinagawa, Y. Shirayanagi, T. Morioka, T. Hayashida, Y. Yuda, S. Kano, Y. Sakai, H. Tokioka, Y. Kusakabe, and H. Fuchigami, Appl. Phys. Express 8, 021402 (2015).
E. Kobayashi, N. Nakamura, K. Hashimoto, and Y. Watabe, in Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition (2013), p. 691.
M. Bivour, S. Schröer, M. Hermle, and S. W. Glunz, Sol. Energy Mater. Sol. Cells 122, 120 (2014).
A. Uruena de Castro, M. Aleman, E. Cornagliotti, A. Sharma, J. Deckers, M. Haslinger, L. Tous, R. Russell, J. John, Y. Yao, T. Söderström, F. Duerinckx, and J. Szlufcik, in Proceedings of the 31st European Photovoltaic Solar Energy Conference and Exhibition (2015), p. 410.
V. Mertens, T. Ballmann, J. Y. Lee, M. Junghänel, F. Stenzel, L. Brandt, A. Schulze, P. Engelhart, J. W. Müller, P. Wawer, and K. H. Küsters, Energy Procedia 27, 53 (2012).
T. Ballmann, V. Mertens, C. Peters, M. Koentopp, J. Cieslak, A. Schonmann, C. Klenke, M. Kauert, G. Zimmermann, S. Bordihn, and J. W. Muller, Energy Procedia 55, 396 (2014).
A. ur Rehman and S. H. Lee, Sci. World J. 2013, 470347.
M. Hermle, F. Granek, O. Schultz, and S. W. Glunz, J. Appl. Phys. 103, 054507 (2008).
M. Bivour, M. Rüdiger, C. Reichel, K.-U. Ritzau, M. Hermle, and S. W. Glunz, Energy Procedia 8, 185 (2011).
F. Book, T. Wiedenmann, G. Schubert, H. Plagwitz, and G. Hahn, Energy Procedia 8, 487 (2011).
S. Bordihn, V. Mertens, P. Engelhart, T. Florian, J. Cieslak, F. Stenzel, P. Kappe, T. Ballmann, J. Y. Lee, T. Lindner, M. Junghanel, J. W. Muller, W. M. M. Kessels, and P. Wawer, in Proceedings of the 26th European Photovoltaic Solar Energy Conference (2011), p. 429.
Y. Schiele, F. Book, S. Seren, G. Hahn, and B. Terheiden, Energy Procedia 27, 460 (2012).
User Manual of Silvaco ATLAS, Software Version 5.18.3.R, 2012.
M. J. Kerr and A. Cuevas, J. Appl. Phys. 91, 2473 (2002).
A. Schenk, J. Appl. Phys. 84, 3684 (1998).
R. A. Sinton and A. Cuevas, Appl. Phys. Lett. 69, 2510 (1996).
D. E. Kane and R. M. Swanson, in Proceedings of the 18th IEEE Photovoltaic Specialists Conference (1985), p. 578.
L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, IEEE J. Photovoltaics 4, 1397 (2014).
M. Taguchi, Y. Tsunomura, H. Inoue, S. Taira, T. Nakashima, T. Baba, H. Sakata, and E. Maruyama, in Proceedings of the 24th European Photovoltaic Solar Energy Conference (2009), p. 1690.

Data & Media loading...


Article metrics loading...



Short circuit current (J) loss in rear emitter crystalline Si solar cell is analyzed in detail by a 2D device simulation and compared with the experimental results. There is a significant loss in J for the rear emitter n-Si solar cell with an n-type doped front surface field (FSF) when the base substrate resistivity is low. It is due to an increase in recombination in the FSF region led by a less barrier height for minority carriers with a lower substrate resistivity. The barrier height less than 0.1 eV causes large loss in J. To achieve higher J for the cells with FSF, the control of the doping concentration in FSF, the substrate thickness, and the barrier height for the minority carriers are important. A rear emitter heterojunction Si solar cell with an amorphous Si passivation layer shows no substrate resistivity dependence on J since an amorphous Si possess a higher barrier height and a long bulk lifetime of more than a few milliseconds.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd