Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/119/23/10.1063/1.4953815
1.
A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
2.
N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Nature 448, 571 (2007).
http://dx.doi.org/10.1038/nature06037
3.
B. Standley, W. Z. Bao, H. Zhang, J. Bruck, C. N. Lau, and M. W. Bockrath, Nano Lett. 8, 3345 (2008).
http://dx.doi.org/10.1021/nl801774a
4.
X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, Nano Lett. 12, 2745 (2012).
http://dx.doi.org/10.1021/nl204414u
5.
L. Zhang, L. Fan, Z. Li, E. Shi, X. M. Li, H. B. Li, C. Y. Ji, Y. Jia, J. Q. Wei, K. L. Wang, H. W. Zhu, D. H. Wu, and A. Y. Cao, Nano Res. 4, 891 (2011).
http://dx.doi.org/10.1007/s12274-011-0145-6
6.
Z. K. Liu, J. H. Li, and F. Yan, Adv. Mater. 25, 42964301 (2013).
http://dx.doi.org/10.1002/adma.201205337
7.
C. L. Hsu, C. T. Lin, J. H. Huang, C. W. Chu, K. H. Wei, and L. J. Li, ACS Nano 6, 5031 (2012).
http://dx.doi.org/10.1021/nn301721q
8.
Z. K. Liu, J. H. Li, Z. H. Sun, G. A. Tai, S. P. Lau, and F. Yan, ACS Nano 6, 810 (2012).
http://dx.doi.org/10.1021/nn204675r
9.
S. Chen, L. Brown, M. Levendor, W. Cai, S. Y. Ju, J. Edgeworth, X. Li, C. Magnuson, A. Velamakanni, R. D. Piner, J. Kang, J. Park, and R. S. Ruoff, ACS Nano 5, 1321 (2011).
http://dx.doi.org/10.1021/nn103028d
10.
R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, Science 335, 442 (2012).
http://dx.doi.org/10.1126/science.1211694
11.
W.-H. Lin et al., ACS Nano 8, 1784 (2014).
http://dx.doi.org/10.1021/nn406170d
12.
Y. H. Kim et al., Adv. Funct. Mater. 21, 1076 (2011).
http://dx.doi.org/10.1002/adfm.201002290
13.
M. P. De Jong et al., Appl. Phys. Lett. 77, 2255 (2000).
http://dx.doi.org/10.1063/1.1315344
14.
A. Charba et al., Langmuir 30, 12474 (2014).
http://dx.doi.org/10.1021/la502480r
15.
A. C. Ferrari et al., Phys. Rev. Lett. 97, 187401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.187401
16.
S. Lee et al., Nano Lett. 10, 4702 (2010).
http://dx.doi.org/10.1021/nl1029978
17.
X. Yin et al., Nano Res. 7, 16131622 (2014).
http://dx.doi.org/10.1007/s12274-014-0521-0
18.
Y. Xia, H. Zhang, and J. Ouyang, J. Mater. Chem. 20, 9740 (2010).
http://dx.doi.org/10.1039/c0jm01593h
19.
J. Li, J. Liu, C. Gao, J. Zhang, and H. Sun, Intern. J. Photoenergy 2009, 650509.
http://dx.doi.org/10.1155/2009/650509
20.
B. Mizaikoff, Chem. Soc. Rev. 42, 8683 (2013).
http://dx.doi.org/10.1039/c3cs60173k
21.
S. K. Hong, S. M. Song, O. Sul, and B. J. Cho, J. Electrochem. Soc. 159, K107 (2012).
http://dx.doi.org/10.1149/2.101204jes
22.
R. Hawaldar, P. Merino, M. R. Correia, I. Bdikin, J. Gracio, J. Mendez, J. A. Martin-Gago, and M. K. Singh, Sci. Rep. 2, 682 (2012).
http://dx.doi.org/10.1038/srep00682
23.
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
24.
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
25.
M. L. Teague, A. P. Lai, J. Velasco, C. R. Hughes, A. D. Beyer, M. W. Bockrath, C. N. Lau, and N.-C. Yeh, Nano Lett. 9, 2542 (2009).
http://dx.doi.org/10.1021/nl9005657
26.
A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
27.
R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955).
http://dx.doi.org/10.1063/1.1740588
http://aip.metastore.ingenta.com/content/aip/journal/jap/119/23/10.1063/1.4953815
Loading
/content/aip/journal/jap/119/23/10.1063/1.4953815
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/119/23/10.1063/1.4953815
2016-06-15
2016-12-11

Abstract

The environmental aging effect of doped graphene is investigated as a function of the organic doping species, humidity, and the number of graphene layers adjacent to the dopant by studies of the Raman spectroscopy, x-ray and ultraviolet photoelectron spectroscopy, scanning electron microscopy, infrared spectroscopy, and electrical transport measurements. It is found that higher humidity and structural defects induce faster degradation in doped graphene. Detailed analysis of the spectroscopic data suggest that the physical origin of the aging effect is associated with the continuing reaction of HO molecules with the hygroscopic organic dopants, which leads to formation of excess chemical bonds, reduction in the doped graphene carrier density, and proliferation of damages from the graphene grain boundaries. These environmental aging effects are further shown to be significantly mitigated by added graphene layers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/119/23/1.4953815.html;jsessionid=epN_V_EFkhTYAJ4RVvB4xXUs.x-aip-live-06?itemId=/content/aip/journal/jap/119/23/10.1063/1.4953815&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/119/23/10.1063/1.4953815&pageURL=http://scitation.aip.org/content/aip/journal/jap/119/23/10.1063/1.4953815'
Right1,Right2,Right3,