Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
T. Buonassisi, A. A. Istratov, M. D. Pickett, M. Heuer, J. P. Kalejs, G. Hahn, M. A. Marcus, B. Lai, Z. Cai, S. M. Heald, T. F. Ciszek, R. F. Clark, D. W. Cunningham, A. M. Gabor, R. Jonczyk, S. Narayanan, E. Sauar, and E. R. Weber, “ Chemical natures and distributions of metal impurities in multicrystalline silicon materials,” Prog. Photovoltaics: Res. Appl. 14, 513 (2006).
I. Takahashi, N. Usami, H. Mizuseki, Y. Kawazoe, G. Stokkan, and K. Nakajima, “ Impact of type of crystal defects in multicrystalline Si on electrical properties and interaction with impurities,” J. Appl. Phys. 109, 033504 (2011).
A. R. Peaker, V. P. Markevich, B. Hamilton, G. Parada, A. Dudas, A. Pap, E. Don, B. Lim, J. Schmidt, L. Yu, Y. Yoon, and G. Rozgonyi, “ Recombination via point defects and their complexes in solar silicon,” Phys. Status Solidi A 209, 1884 (2012).
S. Pizzini, “ Towards solar grade silicon: Challenges and benefits for low cost photovoltaics,” Sol. Energy Mater. Sol. Cells 94, 1528 (2010).
B. Ziebarth, M. Mrovec, C. Elsässer, and P. Gumbsch, “ Interstitial iron impurities at grain boundaries in silicon: A first-principles study,” Phys. Rev. B 91, 035309 (2015).
B. Ziebarth, M. Mrovec, C. Elsässer, and P. Gumbsch, “ Interstitial iron impurities at cores of dissociated dislocations in silicon,” Phys. Rev. B 92, 195308 (2015).
M. Seibt, V. Kveder, W. Schröter, and O. Voß, “ Structural and electrical properties of metal impurities at dislocations in silicon,” Phys. Status Solidi A 202, 911 (2005).
M. I. Bertoni, D. P. Fenning, M. Rinio, V. Rose, M. Holt, J. Maser, and T. Buonassisi, “ Nanoprobe X-ray fluorescence characterization of defects in large-area solar cells,” Energy Environ. Sci. 4, 4252 (2011).
K. Bothe, R. Krain, R. Falster, and R. Sinton, “ Determination of the bulk lifetime of bare multicrystalline silicon wafers,” Prog. Photovoltaics: Res. Appl. 18, 204 (2010).
E. Olsen and E. J. Øvrelid, “ Silicon nitride coating and crucible—effects of using upgraded materials in the casting of multicrystalline silicon ingots,” Prog. Photovoltaics: Res. Appl. 16, 93 (2008).
G. Stokkan, “ Relationship between dislocation density and nucleation of multicrystalline silicon,” Acta Mater. 58, 3223 (2010).
B. Ryningen, G. Stokkan, M. Kivambe, T. Ervik, and O. Lohne, “ Growth of dislocation clusters during directional solidification of multicrystalline silicon ingots,” Acta Mater. 59, 7703 (2011).
R. Kvande, L. J. Geerligs, G. Coletti, L. Arnberg, M. Di Sabatino, E. J. Øvrelid, and C. C. Swanson, “ Distribution of iron in multicrystalline silicon ingots,” J. Appl. Phys. 104, 064905 (2008).
D. Macdonald, A. Cuevas, A. Kinomura, Y. Nakano, and L. J. Geerligs, “ Transition-metal profiles in a multicrystalline silicon ingot,” J. Appl. Phys. 97, 033523 (2005).
T. U. Nærland, L. Arnberg, and A. Holt, “ Origin of the low carrier lifetime edge zone in multicrystalline PV silicon,” Prog. Photovoltaics: Res. Appl. 17, 289 (2009).
A. A. Istratov, T. Buonassisi, R. J. McDonald, A. R. Smith, R. Schindler, J. A. Rand, J. P. Kalejs, and E. R. Weber, “ Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length,” J. Appl. Phys. 94, 6552 (2003).
A. E. Morishige, H. S. Laine, J. Schön, A. Haarahiltunen, J. Hofstetter, C. del Cañizo, M. C. Schubert, H. Savin, and T. Buonassisi, “ Building intuition of iron evolution during solar cell processing through analysis of different process models,” Appl. Phys. A 120, 1357 (2015).
I. Périchaud, “ Gettering of impurities in solar silicon,” Sol. Energy Mater. Sol. Cells 72, 315 (2002).
D. Abdelbarey, V. Kveder, W. Schröter, and M. Seibt, “ Aluminum gettering of iron in silicon as a problem of the ternary phase diagram,” Appl. Phys. Lett. 94, 061912 (2009).
S. P. Phang and D. Macdonald, “ Direct comparison of boron, phosphorus, and aluminum gettering of iron in crystalline silicon,” J. Appl. Phys. 109, 073521 (2011).
H. Talvitie, V. Vähänissi, A. Haarahiltunen, M. Yli-Koski, and H. Savin, “ Phosphorus and boron diffusion gettering of iron in monocrystalline silicon,” J. Appl. Phys. 109, 093505 (2011).
G. Martins, R. S. Bonilla, T. Burton, P. MacDonald, and P. R. Wilshaw, “ Minority carrier lifetime improvement of multicrystalline silicon using combined saw damage gettering and emitter formation,” Solid State Phenom. 242, 126 (2015).
J. Hofstetter, D. P. Fenning, D. M. Powell, A. E. Morishige, H. Wagner, and T. Buonassisi, “ Sorting metrics for customized phosphorus diffusion gettering,” IEEE J. Photovoltaics 4, 1421 (2014).
R. Krain, S. Herlufsen, and J. Schmidt, “ Internal gettering of iron in multicrystalline silicon at low temperature,” Appl. Phys. Lett. 93, 152108 (2008).
A. Liu, D. Walter, S. P. Phang, and D. Macdonald, “ Investigating internal gettering of iron at grain boundaries in multicrystalline silicon via photoluminescence imaging,” IEEE J. Photovoltaics 2, 479 (2012).
A. Y. Liu and D. Macdonald, “ Precipitation of iron in multicrystalline silicon during annealing,” J. Appl. Phys. 115, 114901 (2014).
Y. Boulfrad, A. Haarahiltunen, H. Savin, E. J. Øvrelid, and L. Arnberg, “ Enhanced performance in the deteriorated area of multicrystalline silicon wafers by internal gettering,” Prog. Photovoltaics: Res. Appl. 23, 30 (2015).
R. Falster, “ Process for contamination removal and minority carrier lifetime improvement in silicon,” U.S. patent No 5,272,119 (1993).
K. J. Fraser, R. J. Falster, and P. R. Wilshaw, “ Cathodoluminescence assessment of annealed silicon and a novel technique for estimating minority carrier lifetime in silicon,” Mater. Sci. Eng. B 159–160, 194 (2009).
M. D. Pickett and T. Buonassisi, “ Iron point defect reduction in multicrystalline silicon solar cells,” Appl. Phys. Lett. 92, 122103 (2008).
M. Rinio, A. Yodyunyong, S. Keipert-Colberg, Y. P. B. Mouafi, D. Borchert, and A. Montesdeoca-Santana, “ Improvement of multicrystalline silicon solar cells by a low temperature anneal after emitter diffusion,” Prog. Photovoltaics: Res. Appl. 19, 165 (2011).
M. Rinio, A. Yodyungyong, S. Keipert-Colberg, D. Borchert, and A. Montesdeoca-Santana, “ Recombination in ingot cast silicon solar cells,” Phys. Status Solidi A 208, 760 (2011).
J. D. Murphy and R. J. Falster, “ Contamination of silicon by iron at temperatures below 800 °C,” Phys. Status Solidi Rapid Res. Lett. 5, 370 (2011).
J. D. Murphy and R. J. Falster, “ The relaxation behaviour of supersaturated iron in single-crystal silicon at 500 to 750 °C,” J. Appl. Phys. 112, 113506 (2012).
P. Karzel, P. Frey, S. Fritz, and G. Hahn, “ Influence of hydrogen on interstitial iron concentration in multicrystalline silicon during annealing steps,” J. Appl. Phys. 113, 114903 (2013).
G. Hahn, M. Käs, and B. Herzog, “ Hydrogenation in crystalline silicon materials for photovoltaic application,” Solid State Phenom. 156–158, 343 (2010).
A. Liu, C. Sun, and D. Macdonald, “ Hydrogen passivation of interstitial iron in boron-doped multicrystalline silicon during annealing,” J. Appl. Phys. 116, 194902 (2014).
P. Hamer, B. Hallam, S. Wenham, and M. Abbott, “ Manipulation of hydrogen charge states for passivation of P-type wafers in photovoltaics,” IEEE J. Photovoltaics 4, 1252 (2014).
S. Leonard, V. P. Markevich, A. R. Peaker, B. Hamilton, and J. D. Murphy, “ Evidence for an iron-hydrogen complex in p-type silicon,” Appl. Phys. Lett. 107, 032103 (2015).
T. Buonassisi, A. A. Istratov, S. Peters, C. Ballif, J. Isenberg, S. Riepe, W. Warta, R. Schindler, G. Willeke, Z. Cai, B. Lai, and E. R. Weber, “ Impact of metal silicide precipitate dissolution during rapid thermal processing of multicrystalline silicon solar cells,” Appl. Phys. Lett. 87, 121918 (2005).
N. Batra, Vandana, S. Kumar, M. Sharma, S. K. Srivastava, P. Sharma, and P. K. Singh, “ A comparative study of silicon surface passivation using ethanolic iodine and bromine solutions,” Sol. Energy Mater. Sol. Cells 100, 43 (2012).
R. A. Sinton and A. Cuevas, “ Contactless determination of current–voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data,” Appl. Phys. Lett. 69, 2510 (1996).
J. D. Murphy, K. Bothe, M. Olmo, V. V. Voronkov, and R. J. Falster, “ The effect of oxide precipitates on minority carrier lifetime in p-type silicon,” J. Appl. Phys. 110, 053713 (2011).
S. Rein and S. W. Glunz, “ Electronic properties of interstitial iron and iron-boron pairs determined by means of advanced lifetime spectroscopy,” J. Appl. Phys. 98, 113711 (2005).
D. H. Macdonald, L. J. Geerligs, and A. Azzizi, “ Iron detection in crystalline silicon by carrier lifetime measurements for arbitrary injection and doping,” J. Appl. Phys. 95, 1021 (2004).
D. Macdonald and A. Cuevas, “ Trapping of minority carriers in multicrystalline silicon,” Appl. Phys. Lett. 74, 1710 (1999).
A. L. Blum, J. S. Swirhun, R. A. Sinton, F. Yan, S. Herasimenka, T. Roth, K. Lauer, J. Haunschild, B. Lim, K. Bothe, Z. Hameiri, B. Seipel, R. Xiong, M. Dhamrin, and J. D. Murphy, “ Inter-laboratory study of eddy-current measurement of excess-carrier recombination lifetime,” IEEE J. Photovoltaics 4, 525 (2014).
T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, “ Photoluminescence imaging of silicon wafers,” Appl. Phys. Lett. 89, 044107 (2006).
D. Macdonald, J. Tan, and T. Trupke, “ Imaging interstitial iron concentrations in boron-doped crystalline silicon using photoluminescence,” J. Appl. Phys. 103, 073710 (2008).
W. Wijaranakula, “ The reaction kinetics of iron-boron pair formation and dissociation in p-type silicon,” J. Electrochem. Soc. 140, 275 (1993).
B. L. Sopori, “ A new defect etch for polycrystalline silicon,” J. Electrochem. Soc. 131, 667 (1984).
D. B. Needleman, H. Choi, D. M. Powell, and T. Buonassisi, “ Rapid dislocation-density mapping of as-cut crystalline silicon wafers,” Phys. Status Solidi Rapid Res. Lett. 7, 1041 (2013).
A. Bentzen, A. Holt, R. Kopecek, G. Stokkan, J. S. Christensen, and B. G. Svensson, “ Gettering of transition metal impurities during phosphorus emitter diffusion in multicrystalline silicon solar cell processing,” J. Appl. Phys. 99, 093509 (2006).
J. Chen, D. Yang, Z. Xi, and T. Sekiguchi, “ Recombination activity of Σ3 boundaries in boron-doped multicrystalline silicon: Influence of iron contamination,” J. Appl. Phys. 97, 033701 (2005).
T. Buonassisi, A. A. Istratov, M. D. Pickett, M. A. Marcus, T. F. Ciszek, and E. R. Weber, “ Metal precipitation at grain boundaries in silicon: Dependence on grain boundary character and dislocation decoration,” Appl. Phys. Lett. 89, 042102 (2006).
A. A. Istratov, H. Hieslmair, and E. R. Weber, “ Iron and its complexes in silicon,” Appl. Phys. A 69, 13 (1999).
D. P. Fenning, A. S. Zuschlag, M. I. Bertoni, B. Lai, G. Hahn, and T. Buonassisi, “ Improved iron gettering of contaminated multicrystalline silicon by high-temperature phosphorus diffusion,” J. Appl. Phys. 113, 214504 (2013).
P. S. Plekhanov, R. Gafiteanu, U. M. Gösele, and T. Y. Tan, “ Modeling of gettering of precipitated impurities from Si for carrier lifetime improvement in solar cell applications,” J. Appl. Phys. 86, 2453 (1999).
J. D. Murphy, K. Bothe, V. V. Voronkov, and R. J. Falster, “ On the mechanism of recombination at oxide precipitates in silicon,” Appl. Phys. Lett. 102, 042105 (2013).
J. D. Murphy, R. E. McGuire, K. Bothe, V. V. Voronkov, and R. J. Falster, “ Competitive gettering of iron in silicon photovoltaics: Oxide precipitates versus phosphorus diffusion,” J. Appl. Phys. 116, 053514 (2014).
J. F. Lelièvre, J. Hofstetter, A. Peral, I. Hoces, F. Recart, and C. del Cañizo, “ Dissolution and gettering of iron during contact co-firing,” Energy Proc. 8, 257 (2011).

Data & Media loading...


Article metrics loading...



We report a systematic study into the effects of long low temperature (≤500 °C) annealing on the lifetime and interstitial iron distributions in as-grown multicrystalline silicon (mc-Si) from different ingot height positions. Samples are characterised in terms of dislocation density, and lifetime and interstitial iron concentration measurements are made at every stage using a temporary room temperature iodine-ethanol surface passivation scheme. Our measurement procedure allows these properties to be monitored during processing in a pseudo way. Sufficient annealing at 300 °C and 400 °C increases lifetime in all cases studied, and annealing at 500 °C was only found to improve relatively poor wafers from the top and bottom of the block. We demonstrate that lifetime in poor as-grown wafers can be improved substantially by a low cost process in the absence of any bulk passivation which might result from a dielectric surface film. Substantial improvements are found in bottom wafers, for which annealing at 400 °C for 35 h increases lifetime from 5.5 s to 38.7 s. The lifetime of top wafers is improved from 12.1 s to 23.8 s under the same conditions. A correlation between interstitial iron concentration reduction and lifetime improvement is found in these cases. Surprisingly, although the interstitial iron concentration exceeds the expected solubility values, low temperature annealing seems to result in an initial increase in interstitial iron concentration, and any subsequent decay is a complex process driven not only by diffusion of interstitial iron.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd