Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
T. Mahefkey, D. M. Allen, J. H. Ambrus, L. H. Caveny, H. B. Finger, G. N. Hatsopoulos, T. K. Hunt, D. Jacobson, E. B. Kennel, R. J. Pinkerton, G. W. Sutton, W. W. Hoover, A. D. Abbott, R. K. Bajscy, W. F. Ballhaus, J. Blackwell, A. J. Broderick, D. L. Cromer, R. A. Davis, J. Fuller, R. Golaszewski, J. M. Guyette, F. H. Hauck, J. L. Junkins, J. K. Lauber, G. K. Muellner, D. J. Newman, J. G. O'Connor, M. R. O'Neill, C. Samuelson, W. E. Scott, K. C. Thornton, R. E. Whitehead, D. S. Wiley, and T. L. Williams, Thermionics Quo Vadis? An Assessment of the DTRA's Advanced Thermionics Research and Development Program ( The National Academies Press, Washington, DC, 2001).
F. J. DiSalvo, Science 285, 703 (1999).
R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, Nature 413, 597 (2001).
W. Schlichter, Ann. Phys. 352, 573 (1915).
G. Gryaznov, At. Energy 89, 510 (2000).
I. Novikov, At. Energ. 3, 409 (1957).
G. N. Hatsopoulos and E. P. Gyftopoulos, Thermionic Energy Conversion, Vol. 1: Processes and Devices ( The MIT Press, 1973).
P. Chambadal, Les Centrales Nucléaires ( Armand Colin, Paris, 1957), pp. 4158.
F. L. Curzon and B. Ahlborn, Am. J. Phys. 43, 22 (1975).
R. Y. Belbachir, Z. An, and T. Ono, J. Micromech. Microeng. 24, 085009 (2014).
J.-H. Lee, I. Bargatin, B. K. Vancil, T. O. Gwinn, R. Maboudian, N. A. Melosh, and R. T. Howe, J. Microelectromech. Syst. 23, 1182 (2014).
K. A. Littau, K. Sahasrabuddhe, D. Barfield, H. Yuan, Z.-X. Shen, R. T. Howe, and N. A. Melosh, Phys. Chem. Chem. Phys. 15, 14442 (2013).
B. Y. Moyzhes and T. H. Geballe, J. Phys. D: Appl. Phys. 38, 782 (2005).
S. Meir, C. Stephanos, T. H. Geballe, and J. Mannhart, J. Renewable Sustainable Energy 5, 043127 (2013).
G. Hassink, R. Wanke, I. Rastegar, W. Braun, C. Stephanos, P. Herlinger, J. H. Smet, and J. Mannhart, Appl. Phys. Lett. Mater. 3, 076106 (2015).
S. P. Surwade, S. N. Smirnov, I. V. Vlassiouk, R. R. Unocic, G. M. Veith, S. Dai, and S. M. Mahurin, Nat. Nanotechnol. 10, 459 (2015).
M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, Nature 524, 204 (2015).
T. Kalvas, O. Tarvainen, T. Ropponen, O. Steczkiewicz, J. Ärje, and H. Clark, Rev. Sci. Instrum. 81, 02B703 (2010).
See for the Ion Beam Simulator software package.
Technical singularities of the E-field that would arise at mathematically sharp edges of the grid wires are avoided in the calculations by smoothing the edges with a radius much smaller than the pitch grid size.
In the calculations, the vacuum level of all electrodes was set to be constant and the potentials for all materials were set to the same value. With this, the chemical potential is constant without voltage bias. These assumptions do not result in a loss of generality. If the work functions were different, the load applied to the device would shift the chemical potentials such that the vacuum levels were aligned (see Fig. 1), corresponding to a trivial shift of the electrode bias.
H. Hibino, H. Kageshima, M. Kotsugi, F. Maeda, F.-Z. Guo, and Y. Watanabe, Phys. Rev. B 79, 125437 (2009).
F. J. Nelson, J.-C. Idrobo, J. D. Fite, Z. L. Mišković, S. J. Pennycook, S. T. Pantelides, J. U. Lee, and A. C. Diebold, Nano Lett. 14, 3827 (2014).
J.-A. Yan, J. A. Driscoll, B. K. Wyatt, K. Varga, and S. T. Pantelides, Phys. Rev. B 84, 224117 (2011).
S.-J. Liang and L. K. Ang, Phys. Rev. Appl. 3, 014002 (2015).
P. Yaghoobi, M. V. Moghaddam, M. Michan, and A. Nojeh, J. Vac. Sci. Technol., B 29, 02B104 (2011).
P. Yaghoobi, M. V. Moghaddam, and A. Nojeh, Solid State Commun. 151, 1105 (2011).
J.-H. Lee, I. Bargatin, K. Iwami, K. A. Littau, M. Vincent, R. Maboudian, Z.-X. Shen, N. A. Melosh, and R. T. Howe, in 15th Solid-State Sensors, Actuators, and Microsystems Workshop, Hilton Head Island, South Carolina, 3–7 June 2012 (2012), pp. 493496.

Data & Media loading...


Article metrics loading...



Mobile energy converters require, in addition to high conversion efficiency and low cost, a low mass. We propose to utilize thermoelectronic converters that use 2D-materials such as graphene for their gate electrodes. Deriving the ultimate limit for their specific energy output, we show that the positive energy output is likely close to the fundamental limit for any conversion of heat into electric power. These converters may be valuable as electric power sources of spacecraft, and with the addition of vacuum enclosures, for power generation in electric planes and cars.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd