Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. Hayne et al., J. Phys. D: Appl. Phys. 46, 264001 (2013).
2. T. Nowozin et al., Appl. Phys. Lett. 102, 052115 (2013).
3. A. Marent, T. Nowozin, M. Geller, and D. Bimberg, Semicond. Sci. Technol. 26, 014026 (2011).
4. R. B. Laghumavarapu, A. Moscho, A. Khoshakhlagh, M. El-Emawy, L. F. Lester, and D. L. Huffaker, Appl. Phys. Lett. 90, 173125 (2007).
5. M. P. Young et al., AIP Adv. 4, 117127 (2014).
6. J. Tatebayashi, A. Khoshakhlagh, S. H. Huang, G. Balakrishnan, L. R. Dawson, and D. L. Huffaker, Appl. Phys. Lett. 90, 261115 (2007).
7. W. H. Lin, K. W. Wang, S. Y. Lin, and M. C. Wu, IEEE Photonics Technol. Lett. 25, 97 (2013).
8. T. H. Loeber, D. Hoffmann, and H. Fouckhardt, Beilstein J. Nanotechnol. 2, 333 (2011).
9. B. Bansal, S. Godefroo, M. Hayne, G. Medeiros-Ribeiro, and V. V. Moshchalkov, Phys. Rev. B 80, 205317 (2009).
10. B. Bansal, M. Hayne, M. Geller, D. Bimberg, and V. V. Moshchalkov, Phys. Rev. B 77, 241304(R) (2008).
11. K. Gradkowski, T. J. Ochalski, D. P. Williams, S. B. Healy, J. Tatebayashi, G. Balakrishnan, E. P. O'Reilly, G. Huyet, and D. L. Huffaker, Phys. Status Solidi B 246, 752 (2009).
12. K. Gradkowski, T. J. Ochalski, N. Pavarelli, H. Y. Liu, J. Tatebayashi, D. P. Williams, D. J. Mowbray, G. Huyet, and D. L. Huffaker, Phys. Rev. B 85, 035432 (2012).
13. M. Ahmad Kamarudin, M. Hayne, R. J. Young, Q. D. Zhuang, T. Ben, and S. I. Molina, Phys. Rev. B 83, 115311 (2011).
14. R. J. Young, E. P. Smakman, A. M. Sanchez, P. Hodgson, P. M. Koenraad, and M. Hayne, Appl. Phys. Lett. 100, 082104 (2012).
15. P. D. Hodgson, R. J. Young, M. Ahmad Kamarudin, P. J. Carrington, A. Krier, Q. D. Zhuang, E. P. Smakman, P. M. Koenraad, and M. Hayne, J. Appl. Phys. 114, 073519 (2013).
16. P. D. Hodgson, M. Hayne, M. Ahmad Kamarudin, Q. D. Zhuang, S. Birindelli, and M. Capizzi, Appl. Phys. Lett. 105, 081907 (2014).
17. E. Soderberg, J. S. Gustavsson, P. Modh, A. Larsson, Z. Z. Zhang, J. Berggren, and M. Hammar, J. Lightwave Technol. 25, 2791 (2007).
18. J. Jewell, L. Graham, M. Crom, K. Maranowski, J. Smith, T. Fanning, and M. Schnoes, Phys. Status Solidi C 5(9), 2951 (2008).
19. M. C. Amann and W. Hofmann, IEEE J. Sel. Top. Quantum Electron. 15, 861 (2009).
20. E. P. Smakman, J. K. Garleff, R. J. Young, M. Hayne, P. Rambabu, and P. M. Koenraad, Appl. Phys. Lett. 100, 142116 (2012).
21. A. J. Robson, I. Grishin, R. J. Young, A. M. Sanchez, O. V. Kolosov, and M. Hayne, ACS Appl. Mater. Interfaces 5, 3241 (2013).
22. P. D. Hodgson, R. J. Young, M. Ahmad Kamarudin, Q. D. Zhuang, and M. Hayne, Phys. Rev. B 88, 155322 (2013).
23. M. Hayne, J. Maes, S. Bersier, V. V. Moshchalkov, A. Schliwa, L. Muller-Kirsch, C. Kapteyn, R. Heitz, and D. Bimberg, Appl. Phys. Lett. 82, 4355 (2003).
24. D. V. Oconnor, W. R. Ware, and J. C. Andre, J. Phys. Chem. 83, 1333 (1979).
25. S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and P. Vogl, IEEE Trans. Electron Devices 54, 2137 (2007).
26. A. J. Martin et al., Appl. Phys. Lett. 102, 113103 (2013).
27. F. Hatami et al., Phys. Rev. B 57, 4635 (1998).
28. W. H. Lin, K. W. Wang, S. W. Chang, M. H. Shih, and S. Y. Lin, Appl. Phys. Lett. 101, 031906 (2012).
29. E. F. Schubert, Light-Emitting Diodes ( Cambridge University Press, 2003).
30. N. N. Ledentsov et al., Phys. Rev. B 54, 8743 (1996).
31. P. J. Carrington, A. S. Mahajumi, M. C. Wagener, J. R. Botha, Q. Zhuang, and A. Krier, Physica B 407, 1493 (2012).

Data & Media loading...


Article metrics loading...



We report the results of continuous and time-resolved photoluminescence measurements on type-II GaSb quantum rings embedded within GaAs/AlGaAs quantum wells. A range of samples were grown with different well widths, compensation-doping concentrations within the wells, and number of quantum-ring layers. We find that each of these variants have no discernible effect on the radiative recombination, except for the very narrowest (5 nm) quantum well. In contrast, single-particle numerical simulations of the sample predict changes in photoluminescence energy of up to 200 meV. This remarkable difference is explained by the strong Coulomb binding of electrons to rings that are multiply charged with holes. The resilience of the emission to compensation doping indicates that multiple hole occupancy of the quantum rings is required for efficient carrier recombination, regardless of whether these holes come from doping or excitation.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd