Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. C. Arnold, K. S. Knight, F. D. Morrison, and P. Lightfoot, Phys. Rev. Lett. 102, 027602 (2009).
2. P. Fischerl, M. PoIomska, I. Sosnowska, and M. Szymanski, J. Phys. C: Solid State Phys. 13, 1931 (1980).
3. I. Sosnowska, T. Peterlin-Neumaier, and E. Steichele, J. Phys. C: Solid State Phys. 15, 48354846 (1982).
4. F. Kubel and H. Schmid, Acta Crystallogr., Sect. B: Struct. Sci. 46, 698 (1990).
5. J. M. Moreau, C. Michel, R. Gerson, and W. J. James, J. Phys. Chem. Solids 32(6), 1315 (1971).
6. J. Neaton, C. Ederer, U. Waghmare, N. Spaldin, and K. Rabe, Phys. Rev. B 71, 04113 (2005).
7. V. V. Shvartsman, W. Kleemann, R. Haumont, and J. Kreisel, Appl. Phys. Lett. 90, 172115 (2007).
8. G. Catalan and J. F. Scott, Adv. Mater. 21, 2463 (2009).
9. S. Karimi, I. Reaney, Y. Han, J. Pokorny, and I. Sterianou, J. Mater. Sci. 44, 5102 (2009).
10. M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005).
11. K. Kalantari, I. Sterianou, D. C. Sinclair, P. A. Bingham, J. Pokorný, and I. M. Reaney, J. Appl. Phys. 111, 064107 (2012).
12. M. S. Bernardo, T. Jardiel, M. Peiteado, A. C. Caballero, and M. Villegas, J. Eur. Ceram. Soc. 31, 3047 (2011).
13. S. Karimi, I. M. Reaney, I. Levin, and I. Sterianou, Appl. Phys. Lett. 94, 112903 (2009).
14. X. Qi, J. Dho, R. Tomov, M. G. Blamire, and J. L. MacManus-Driscoll, Appl. Phys. Lett. 86, 062903 (2005).
15. K. Kalantari, I. Sterianou, S. Karimi, M. C. Ferrarelli, S. Miao, D. C. Sinclair, and I. M. Reaney, Adv. Funct. Mater. 21, 3737 (2011).
16. I. M. Reaney, I. MacLaren, L. Wang, B. Schaffer, A. Craven, K. Kalantari, I. Sterianou, S. Miao, S. Karimi, and D. C. Sinclair, Appl. Phys. Lett. 100, 182902 (2012).
17. P. Goudochnikov and A. J. Bell, J. Phys.: Condens. Matter 19, 176201 (2007).
18. V. M. Goldschmidt, Naturwissenschaften 14, 477 (1926).
19. R. D. Shannon, J. Appl. Phys. 73, 348 (1993).
20. Y.-K. Jun, W.-T. Moon, C.-M. Chang, H.-S. Kim, H. S. Ryu, J. W. Kim, K. H. Kim, and S.-H. Hong, Solid State Commun. 135, 133 (2005).
21. C. J. Cheng, D. Kan, S. H. Lim, W. R. McKenzie, P. R. Munroe, L. G. Salamanca-Riba, R. L. Withers, I. Takeuchi, and V. Nagarajan, Phys. Rev. B 80, 014109 (2009).
22. V. Goian, S. Kamba, S. Greicius, D. Nuzhnyy, S. Karimi, and I. M. Reaney, J. Appl. Phys. 110, 074112 (2011).
23. Y. F. Cui, Y. G. Zhao, L. B. Luo, J. J. Yang, H. Chang, M. H. Zhu, D. Xie, and T. L. Ren, Appl. Phys. Lett. 97, 222904 (2010).
24. D. I. Woodward and I. M. Reaney, Acta Crystallogr., Sect. B: Struct. Sci. 61, 387 (2005).
25. I. MacLaren, R. Villaurrutia, and A. Peláiz-Barranco, J. Appl. Phys. 108, 034109 (2010).
26. A. M. Glazer, Acta Crystallogr., Sect. B: Struct. Sci. 49, 846852 (1993).
27. S. R. Tanaka and M. K. Tsuzuki, Jpn. J. Appl. Phys., Part 1 21, 291 (1982).
28. D. C. Sinclair and A. R. West, J. Appl. Phys. 66, 3850 (1989).
29. D. I. Woodward, J. Knudsen, and I. M. Reaney, Phys. Rev. B 72(10), 104110 (2005).
30. I. Levin and I. M. Reaney, Adv. Funct. Mater. 22(16), 3445 (2012).
31. I. Levin, I. M. Reaney, E. M. Anton, W. Jo, J. Rödel, J. Pokorny, L. A. Schmitt, H. J. Kleebe, M. Hinterstein, and J. L. Jones, Phys. Rev. B 87(2), 024113 (2013).

Data & Media loading...


Article metrics loading...



The phase transitions and domain structure of the promising PbO-free solid solution series, BiFeO-LaFeO-LaTiO, were investigated. X ray diffraction(XRD) revealed a transition from a ferroelectric to a PbZrO-like () antiferroelectric (AFE) structure at  = 0.15 followed by a transition to a paraelectric (PE, ) phase at  > 0.30. The ferroelastic/ferroelectric twin domain width decreased to 10–20 nm with increasing as the AFE phase boundary was approached but coherent antiphase tilted domains were an order of magnitude greater. This domain structure suggested the local symmetry (20 nm) is lower than the average structure () of the tilted regions. The PE phase ( = 0.35) exhibited a dominant tilt system with symmetry but diffuse reflections at ∼1/4{} positions suggest that short range antipolar order is residual in the PE phase. The complex domain structure and phase assemblage of this system challenge the conventional interpretation of phase transitions based on macroscopic symmetry. Instead, it supports the notion that frustration driven by chemical distributions at the nanometric level influences the local or pseudo-symmetry as well as the domain structure, with XRD giving only the average macroscopic structure.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd