Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/119/5/10.1063/1.4940391
1.
1. D. C. Arnold, K. S. Knight, F. D. Morrison, and P. Lightfoot, Phys. Rev. Lett. 102, 027602 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.027602
2.
2. P. Fischerl, M. PoIomska, I. Sosnowska, and M. Szymanski, J. Phys. C: Solid State Phys. 13, 1931 (1980).
http://dx.doi.org/10.1088/0022-3719/13/10/012
3.
3. I. Sosnowska, T. Peterlin-Neumaier, and E. Steichele, J. Phys. C: Solid State Phys. 15, 48354846 (1982).
http://dx.doi.org/10.1088/0022-3719/15/23/020
4.
4. F. Kubel and H. Schmid, Acta Crystallogr., Sect. B: Struct. Sci. 46, 698 (1990).
http://dx.doi.org/10.1107/S0108768190006887
5.
5. J. M. Moreau, C. Michel, R. Gerson, and W. J. James, J. Phys. Chem. Solids 32(6), 1315 (1971).
http://dx.doi.org/10.1016/S0022-3697(71)80189-0
6.
6. J. Neaton, C. Ederer, U. Waghmare, N. Spaldin, and K. Rabe, Phys. Rev. B 71, 04113 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.014113
7.
7. V. V. Shvartsman, W. Kleemann, R. Haumont, and J. Kreisel, Appl. Phys. Lett. 90, 172115 (2007).
http://dx.doi.org/10.1063/1.2731312
8.
8. G. Catalan and J. F. Scott, Adv. Mater. 21, 2463 (2009).
http://dx.doi.org/10.1002/adma.200802849
9.
9. S. Karimi, I. Reaney, Y. Han, J. Pokorny, and I. Sterianou, J. Mater. Sci. 44, 5102 (2009).
http://dx.doi.org/10.1007/s10853-009-3545-1
10.
10. M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005).
http://dx.doi.org/10.1088/0022-3727/38/8/R01
11.
11. K. Kalantari, I. Sterianou, D. C. Sinclair, P. A. Bingham, J. Pokorný, and I. M. Reaney, J. Appl. Phys. 111, 064107 (2012).
http://dx.doi.org/10.1063/1.3697666
12.
12. M. S. Bernardo, T. Jardiel, M. Peiteado, A. C. Caballero, and M. Villegas, J. Eur. Ceram. Soc. 31, 3047 (2011).
http://dx.doi.org/10.1016/j.jeurceramsoc.2011.03.018
13.
13. S. Karimi, I. M. Reaney, I. Levin, and I. Sterianou, Appl. Phys. Lett. 94, 112903 (2009).
http://dx.doi.org/10.1063/1.3097222
14.
14. X. Qi, J. Dho, R. Tomov, M. G. Blamire, and J. L. MacManus-Driscoll, Appl. Phys. Lett. 86, 062903 (2005).
http://dx.doi.org/10.1063/1.1862336
15.
15. K. Kalantari, I. Sterianou, S. Karimi, M. C. Ferrarelli, S. Miao, D. C. Sinclair, and I. M. Reaney, Adv. Funct. Mater. 21, 3737 (2011).
http://dx.doi.org/10.1002/adfm.201100191
16.
16. I. M. Reaney, I. MacLaren, L. Wang, B. Schaffer, A. Craven, K. Kalantari, I. Sterianou, S. Miao, S. Karimi, and D. C. Sinclair, Appl. Phys. Lett. 100, 182902 (2012).
http://dx.doi.org/10.1063/1.4705431
17.
17. P. Goudochnikov and A. J. Bell, J. Phys.: Condens. Matter 19, 176201 (2007).
http://dx.doi.org/10.1088/0953-8984/19/17/176201
18.
18. V. M. Goldschmidt, Naturwissenschaften 14, 477 (1926).
http://dx.doi.org/10.1007/BF01507527
19.
19. R. D. Shannon, J. Appl. Phys. 73, 348 (1993).
http://dx.doi.org/10.1063/1.353856
20.
20. Y.-K. Jun, W.-T. Moon, C.-M. Chang, H.-S. Kim, H. S. Ryu, J. W. Kim, K. H. Kim, and S.-H. Hong, Solid State Commun. 135, 133 (2005).
http://dx.doi.org/10.1016/j.ssc.2005.03.038
21.
21. C. J. Cheng, D. Kan, S. H. Lim, W. R. McKenzie, P. R. Munroe, L. G. Salamanca-Riba, R. L. Withers, I. Takeuchi, and V. Nagarajan, Phys. Rev. B 80, 014109 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.014109
22.
22. V. Goian, S. Kamba, S. Greicius, D. Nuzhnyy, S. Karimi, and I. M. Reaney, J. Appl. Phys. 110, 074112 (2011).
http://dx.doi.org/10.1063/1.3650241
23.
23. Y. F. Cui, Y. G. Zhao, L. B. Luo, J. J. Yang, H. Chang, M. H. Zhu, D. Xie, and T. L. Ren, Appl. Phys. Lett. 97, 222904 (2010).
http://dx.doi.org/10.1063/1.3524225
24.
24. D. I. Woodward and I. M. Reaney, Acta Crystallogr., Sect. B: Struct. Sci. 61, 387 (2005).
http://dx.doi.org/10.1107/S0108768105015521
25.
25. I. MacLaren, R. Villaurrutia, and A. Peláiz-Barranco, J. Appl. Phys. 108, 034109 (2010).
http://dx.doi.org/10.1063/1.3460106
26.
26. A. M. Glazer, Acta Crystallogr., Sect. B: Struct. Sci. 49, 846852 (1993).
http://dx.doi.org/10.1107/S0108768193005129
27.
27. S. R. Tanaka and M. K. Tsuzuki, Jpn. J. Appl. Phys., Part 1 21, 291 (1982).
http://dx.doi.org/10.1143/JJAP.21.291
28.
28. D. C. Sinclair and A. R. West, J. Appl. Phys. 66, 3850 (1989).
http://dx.doi.org/10.1063/1.344049
29.
29. D. I. Woodward, J. Knudsen, and I. M. Reaney, Phys. Rev. B 72(10), 104110 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.104110
30.
30. I. Levin and I. M. Reaney, Adv. Funct. Mater. 22(16), 3445 (2012).
http://dx.doi.org/10.1002/adfm.201200282
31.
31. I. Levin, I. M. Reaney, E. M. Anton, W. Jo, J. Rödel, J. Pokorny, L. A. Schmitt, H. J. Kleebe, M. Hinterstein, and J. L. Jones, Phys. Rev. B 87(2), 024113 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.024113
http://aip.metastore.ingenta.com/content/aip/journal/jap/119/5/10.1063/1.4940391
Loading
/content/aip/journal/jap/119/5/10.1063/1.4940391
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/119/5/10.1063/1.4940391
2016-02-03
2016-12-08

Abstract

The phase transitions and domain structure of the promising PbO-free solid solution series, BiFeO-LaFeO-LaTiO, were investigated. X ray diffraction(XRD) revealed a transition from a ferroelectric to a PbZrO-like () antiferroelectric (AFE) structure at  = 0.15 followed by a transition to a paraelectric (PE, ) phase at  > 0.30. The ferroelastic/ferroelectric twin domain width decreased to 10–20 nm with increasing as the AFE phase boundary was approached but coherent antiphase tilted domains were an order of magnitude greater. This domain structure suggested the local symmetry (20 nm) is lower than the average structure () of the tilted regions. The PE phase ( = 0.35) exhibited a dominant tilt system with symmetry but diffuse reflections at ∼1/4{} positions suggest that short range antipolar order is residual in the PE phase. The complex domain structure and phase assemblage of this system challenge the conventional interpretation of phase transitions based on macroscopic symmetry. Instead, it supports the notion that frustration driven by chemical distributions at the nanometric level influences the local or pseudo-symmetry as well as the domain structure, with XRD giving only the average macroscopic structure.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/119/5/1.4940391.html;jsessionid=JthnfG5mIKA7NIDti287jIkg.x-aip-live-03?itemId=/content/aip/journal/jap/119/5/10.1063/1.4940391&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/119/5/10.1063/1.4940391&pageURL=http://scitation.aip.org/content/aip/journal/jap/119/5/10.1063/1.4940391'
Right1,Right2,Right3,