Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrech, IEEE J. Quantum Electron. 48, 99 (2012).
2. J. S. Parker, E. J. Norberg, Y.-J. Hung, B. Kim, R. S. Guzzon, and L. A. Coldren, IEEE Photon. Technol. Lett. 23, 573 (2011).
3. L. Shang, L. Liu, and L. Xu, Opt. Lett. 33, 1150 (2008).
4. G. Tseta, Y. Huang, P. M. Sarro, L. Zemi, and R. Bernini, Appl. Phys. Lett. 97, 131110 (2010).
5. S. Suzuki, Y. Kokubun, M. Nakazawa, T. Yamamoto, and S. T. Chu, J. Lightwave Technol. 19, 266 (2001).
6. N. L. Aung, L. Ge, O. Malik, H. E. Türeci, and C. F. Gmachl, Appl. Phys. Lett. 107, 151106 (2015).
7. K.-H. Yoon, K. R. Oh, K. S. Kim, J. H. Kim, and K. C. Kim, IEEE Photon. Technol. Lett. 21, 851 (2009).
8. X. Wang, X. Guan, Q. Huang, J. Zheng, Y. Shi, and D. Dai, Opt. Lett. 38, 5405 (2013).
9. S. Blair and Y. Chen, Appl. Opt. 40, 570 (2001.
10. X. Jiang, M. Wang, M. C. Kuzyk, T. Oo, G.-L. Long, and H. Wang, Opt. Express 23, 27260 (2015).
11. K. S. Hyun and H. J. Moon, Opt. Express 18, 6382 (2010).
12. M. Sorel, P. J. R. Laybourn, G. Giuliani, and S. Donati, Appl. Phys. Lett. 80, 3051 (2002).
13. J. Javaloyes and S. Balle, IEEE J. Quantum Electron. 45, 431 (2009).
14. A. Pérez-Serrano, J. Javaloyes, and S. Balle, Opt. Express 19, 3284 (2011).
15. D. Liang, S. Srinivasan, D. A. Fattal, M. Fiorentino, Z. Huang, D. T. Spencer, J. E. Bowers, and R. G. Beausoleil, IEEE Photon. Technol. Lett. 24, 1988 (2012).
16. J. J. Liang, S. T. Lau, M. H. Leary, and J. M. Ballantyne, Appl. Phys. Lett. 70, 1192 (1997).
17. S. Kharitonov and C. S. Brès, Light Sci. Appl. 4, e340 (2015).
18. J. P. Hohimer, G. A. Vawter, and D. C. Craft, Appl. Phys. Lett. 62, 1185 (1993).
19. H. Cao, H. Ling, H. Ling, C. Liu, H. Deng, M. Benavidez, V. A. Smagley, R. B. Caldwell, G. M. Peake, G. A. Smolyakov, P. G. Eliseev, and M. Osinski, IEEE Photon. Tech. Lett. 17, 282 (2005).
20. C. C. Nshii, C. N. Ironside, M. Sorel, T. J. Slight, S. Y. Zhang, D. G. Revin, and J. W. Cockburn, Appl. Phys. Lett. 97, 231107 (2010).
21. G. Sun, Y. Chung, Z. Luo, Z. Cai, and C. Ye, Opt. Fiber Tech. 13, 198 (2007).
22. Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, Proc. Natl. Acad. Sci. U.S.A. 107, 22407 (2010).
23. J. D. B. Bradley, E. S. Hosseini, Z. Su, Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, Opt. Express 22, 12226 (2014).
24. M.-Y. Tang, S.-S. Sui, Y.-D. Yang, J.-L. Xiao, Y. Du, and Y.-Z. Huang, Opt. Express 23, 27739 (2015).

Data & Media loading...


Article metrics loading...



We propose and demonstrate a selection scheme of lasing direction by imposing a loss imbalance structure into the single mode square ring cavity. The control of the traveling direction is realized by introducing a taper-step section in one of the straight waveguides of the square ring cavity. It was shown by semi-analytic calculation that the taper-step section in the cavity provides effective loss imbalance between two travelling directions as the round trip repeats. Various kinds of square cavities were fabricated using InGaAsP/InGaAs multiple quantum well semiconductor materials in order to test the direction selectivity while maintaining the single mode. We also measured the pump power dependent lasing spectra to investigate the maintenance property of the lasing direction. The experimental results demonstrated that the proposed scheme is an efficient means for a unidirectional lasing in a single mode laser.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd