Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/119/5/10.1063/1.4941321
1.
1. Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, Appl. Phys. Lett. 94, 111109 (2009).
http://dx.doi.org/10.1063/1.3100773
2.
2. A. Hangleiter, D. Fuhrmann, M. Grewe, F. Hitzel, G. Klewer, S. Lahmann, C. Netzel, N. Riedel, and U. Rossow, Phys. Status Solidi A 201, 2808 (2004).
http://dx.doi.org/10.1002/pssa.200405051
3.
3. Y. L. Li, Y. R. Huang, and Y. H. Lai, Appl. Phys. Lett. 91, 181113 (2007).
http://dx.doi.org/10.1063/1.2805197
4.
4. S. Nakamura, M. Senoh, and T. Mukai, Appl. Phys. Lett. 62, 2390 (1993).
http://dx.doi.org/10.1063/1.109374
5.
5. S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).
http://dx.doi.org/10.1063/1.111832
6.
6. M. J. Davies, P. Dawson, F. C.-P. Massabuau, F. Oehler, R. A. Oliver, M. J. Kappers, T. J. Badcock, and C. J. Humphreys, Phys. Status Solidi C 11, 750 (2014).
http://dx.doi.org/10.1002/pssc.201300452
7.
7. T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys., Part 2 36, L382 (1997).
http://dx.doi.org/10.1143/JJAP.36.L382
8.
8. F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 63, 193201 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.193201
9.
9. O. Mayrock, H.-J. Wünsche, and F. Henneberger, Phys. Rev. B 62, 16870 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.16870
10.
10. N. Otsuji, K. Fujiwara, and J. K. Sheu, J. Appl. Phys. 100, 113105 (2006).
http://dx.doi.org/10.1063/1.2398690
11.
11. P. T. Törmä, O. Svensk, M. Ali, S. Suihkonen, M. Sopanen, M. A. Odnoblyudov, and V. E. Bougrov, J. Cryst. Growth 310, 5162 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2008.07.031
12.
12. Y. Takahashi, A. Satake, K. Fujiwara, J. K. Shue, U. Jahn, H. Kostial, and H. T. Grahn, Phys. E 21, 876 (2004).
http://dx.doi.org/10.1016/j.physe.2003.11.142
13.
13. T. Akasaka, H. Gotoh, T. Saito, and T. Makimoto, Appl. Phys. Lett. 85, 3089 (2004).
http://dx.doi.org/10.1063/1.1804607
14.
14. T. Akasaka, H. Gotoh, Y. Kobayashi, H. Nakano, and T. Makimoto, Appl. Phys. Lett. 89, 101110 (2006).
http://dx.doi.org/10.1063/1.2347115
15.
15. N. Nanhui, W. Huaibing, L. Jianping, L. Naixin, X. Yanhui, H. Jun, D. Jun, and S. Guangdi, J. Cryst. Growth 286, 209 (2006).
http://dx.doi.org/10.1016/j.jcrysgro.2005.09.027
16.
16. N. Nanhui, W. Huaibing, L. Jianping, L. Naixin, X. Yanhui, H. Jun, D. Jun, and S. Guangdi, Solid-State Electron. 51, 860 (2007).
http://dx.doi.org/10.1016/j.sse.2007.04.007
17.
17. M. J. Davies, F. C.-P. Massabuau, P. Dawson, R. A. Oliver, M. J. Kappers, and C. J. Humphreys, Phys. Status Solidi C 11, 710 (2014).
http://dx.doi.org/10.1002/pssc.201300451
18.
18. T. Li, Q. Y. Wei, A. M. Fischer, J. Y. Huang, Y. U. Huang, F. A. Ponce, J. P. Liu, Z. Lochner, J.-H. Ryou, and R. D. Dupuis, Appl. Phys. Lett. 102, 041115 (2013).
http://dx.doi.org/10.1063/1.4789758
19.
19. A. M. Armstrong, B. N. Bryant, M. H. Crawford, D. D. Koleske, S. R. Lee, and J. J. Wierer, J. Appl. Phys. 117, 134501 (2015).
http://dx.doi.org/10.1063/1.4916727
20.
20. M. J. Davies, P. Dawson, F. C.-P. Massabuau, R. A. Oliver, M. J. Kappers, and C. J. Humphreys, Appl. Phys. Lett. 105, 092106 (2014).
http://dx.doi.org/10.1063/1.4894834
21.
21. M. J. Davies, P. Dawson, F. C.-P. Massabuau, A. L. Fol, R. A. Oliver, M. J. Kappers, and C. J. Humphreys, Phys. Status Solidi B 252, 866 (2015).
http://dx.doi.org/10.1002/pssb.201451535
22.
22. Y. Xia, W. Hou, L. Zhao, M. Zhu, T. Detchprohm, and C. Wetzel, IEEE Trans. Electron Devices 57, 2639 (2010).
http://dx.doi.org/10.1109/TED.2010.2061233
23.
23. H. Takahashi, A. Ito, T. Tanaka, A. Watanabe, H. Ota, and K. Chikuma, Jpn. J. Appl. Phys., Part 2 39, L569 (2000).
http://dx.doi.org/10.1143/JJAP.39.L569
24.
24. A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow, G. Ade, and P. Hinze, Phys. Rev. Lett. 95, 127402 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.127402
25.
25. S. J. Leem, Y. C. Shin, E. H. Kim, C. M. Kim, B. G. Lee, Y. Moon, I. H. Lee, and T. G. Kim, Semicond. Sci. Technol. 23, 125039 (2008).
http://dx.doi.org/10.1088/0268-1242/23/12/125039
26.
26. M. E. Vickers, M. J. Kappers, T. M. Smeeton, E. J. Thrush, J. S. Barnard, and C. J. Humphreys, J. Appl. Phys. 94, 1565 (2003).
http://dx.doi.org/10.1063/1.1587251
27.
27. M. Hýtch, E. Snoeck, and R. Kilaas, Ultramicroscopy 74, 131 (1998).
http://dx.doi.org/10.1016/S0304-3991(98)00035-7
28.
28. A. Morel, P. Lefebvre, S. Kalliakos, T. Taliercio, T. Bretagnon, and B. Gil, Phys. Rev. B 68, 045331 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.045331
29.
29. P. G. Eliseev, M. Osinski, J. Lee, T. Sugahara, and S. Sakai, J. Electron. Mater. 29, 332 (2000).
http://dx.doi.org/10.1007/s11664-000-0073-9
30.
30. D. M. Graham, A. Soltani-Vala, P. Dawson, M. J. Godfrey, T. M. Smeeton, J. S. Barnard, M. J. Kappers, C. J. Humphreys, and E. J. Thrush, J. Appl. Phys. 97, 103508 (2005).
http://dx.doi.org/10.1063/1.1897070
31.
31. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996).
http://dx.doi.org/10.1063/1.116981
32.
32. S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, Appl. Phys. Lett. 73, 2006 (1998).
http://dx.doi.org/10.1063/1.122350
33.
33. C. Sasaki, M. Iwata, Y. Yamada, T. Taguchi, S. Watanabe, M. Minsky, T. Takeuchi, and N. Yamada, Phys. Status Solidi B 228, 133 (2001).
http://dx.doi.org/10.1002/1521-3951(200111)228:1<133::AID-PSSB133>3.0.CO;2-6
34.
34. W. Shan, W. Walukiewicz, E. E. Haller, B. D. Little, J. J. Song, M. D. McCluskey, N. M. Johnson, Z. C. Feng, M. Schurman, and R. A. Stall, J. Appl. Phys. 84, 4452 (1998).
http://dx.doi.org/10.1063/1.368669
35.
35. M. D. McCluskey, C. G. Van de Walle, L. T. Romano, B. S. Krusor, and N. M. Johnson, J. Appl. Phys. 93, 4340 (2003).
http://dx.doi.org/10.1063/1.1560563
36.
36. Q. Guo and A. Yoshida, Jpn. J. Appl. Phys., Part 1 33, 2453 (1994).
http://dx.doi.org/10.1143/JJAP.33.2453
37.
37. L. H. Peng, C. W. Shih, C. M. Lai, C. C. Chuo, and J. I. Chyi, Appl. Phys. Lett. 82, 4268 (2003).
http://dx.doi.org/10.1063/1.1583869
38.
38. Y. Wang, X. Pei, Z. Xing, L. Guo, H. Jia, H. Chen, and J. Zhou, Jpn. J. Appl. Phys., Part 1 46, 4079 (2007).
http://dx.doi.org/10.1143/JJAP.46.4079
39.
39. B. Monemar, P. Paskov, G. Pozina, J. Bergman, S. Kamiyama, M. Iwaya, H. Amano, and I. Akasaki, Phys. Status Solidi A 192, 21 (2002).
http://dx.doi.org/10.1002/1521-396X(200207)192:1<21::AID-PSSA21>3.0.CO;2-Q
40.
40. P. Lefebvre, A. Morel, M. Gallart, T. Taliercio, J. Allegre, B. Gil, H. Mathieu, B. Damilano, N. Grandjean, and J. Massies, Appl. Phys. Lett. 78, 1252 (2001).
http://dx.doi.org/10.1063/1.1351517
41.
41. T. J. Badcock, P. Dawson, M. J. Davies, M. J. Kappers, F. C.-P. Massabuau, F. Oehler, R. A. Oliver, and C. J. Humphreys, J. Appl. Phys. 115, 113505 (2014).
http://dx.doi.org/10.1063/1.4868628
42.
42. C.-N. Brosseau, M. Perrin, C. Silva, and R. Leonelli, Phys. Rev. B 82, 085305 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.085305
43.
43. Y. Narukawa, Y. Kawakami, S. Fujita, S. Fujita, and S. Nakamura, Phys. Rev. B 55, R1938 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.R1938
44.
44. J. A. Davidson, P. Dawson, T. Wang, T. Sugahara, J. W. Orton, and S. Sakai, Semicond. Sci. Technol. 15, 497 (2000).
http://dx.doi.org/10.1088/0268-1242/15/6/302
45.
45. P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, Appl. Phys. Lett. 71, 569 (1997).
http://dx.doi.org/10.1063/1.119797
46.
46. O. Rubel, M. Galluppi, S. D. Baranovskii, K. Volz, L. Geelhaar, H. Riechert, P. Thomas, and W. Stolz, J. Appl. Phys. 98, 063518 (2005).
http://dx.doi.org/10.1063/1.2058192
47.
47. O. Rubel, S. D. Baranovskii, K. Hantke, B. Kunert, W. W. Rühle, P. Thomas, K. Volz, and W. Stolz, Phys. Rev. B 73, 233201 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.233201
48.
48. S. Hammersley, D. Watson-Parris, P. Dawson, M. J. Godfrey, T. J. Badcock, M. J. Kappers, C. McAleese, R. A. Oliver, and C. J. Humphreys, J. Appl. Phys. 111, 083512 (2012).
http://dx.doi.org/10.1063/1.3703062
49.
49. Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 73, 1370 (1998).
http://dx.doi.org/10.1063/1.122164
50.
50. M. Gurioli, A. Vinattieri, J. Martinez-Pastor, and M. Colocci, Phys. Rev. B 50, 11817 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.11817
51.
51. P. G. Eliseev, J. Appl. Phys. 93, 5404 (2003).
http://dx.doi.org/10.1063/1.1567055
52.
52. Q. Li, S. J. Xu, M. H. Xie, and S. Y. Tong, J. Phys.: Condens. Matter 17, 4853 (2005).
http://dx.doi.org/10.1088/0953-8984/17/30/011
53.
53. C.-K. Sun, T.-L. Chiu, S. Keller, G. Wang, M. S. Minsky, S. P. DenBaars, and J. E. Bowers, Appl. Phys. Lett. 71, 425 (1997).
http://dx.doi.org/10.1063/1.119568
54.
54. B. Monemar, J. Bergman, J. Dalfors, G. Pozina, B. Sernelius, P. Holtz, H. Amano, and I. Akasaki, MRS Proc. 537, G2.5 (1998).
http://dx.doi.org/10.1557/PROC-537-G2.5
55.
55. M. Gladysiewicz, R. Kudrawiec, M. Syperek, J. Misiewicz, M. Siekacz, G. Cywinski, A. Khachapuridze, T. Suski, and C. Skierbiszewski, Appl. Phys. A 115, 1015 (2014).
http://dx.doi.org/10.1007/s00339-013-7935-5
56.
56. T. Langer, H.-G. Pietscher, F. A. Ketzer, H. Jönen, H. Bremers, U. Rossow, D. Menzel, and A. Hangleiter, Phys. Rev. B 90, 205302 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.205302
57.
57. H.-C. Wang, S.-C. Lin, Y.-C. Lu, Y.-C. Cheng, C. C. Yang, and K.-J. Ma, Appl. Phys. Lett. 85, 1371 (2004).
http://dx.doi.org/10.1063/1.1784033
http://aip.metastore.ingenta.com/content/aip/journal/jap/119/5/10.1063/1.4941321
Loading
/content/aip/journal/jap/119/5/10.1063/1.4941321
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/119/5/10.1063/1.4941321
2016-02-05
2016-12-10

Abstract

In this paper, we report on a detailed spectroscopic study of the optical properties of InGaN/GaN multiple quantum well structures, both with and without a Si-doped InGaN prelayer. In photoluminescence and photoluminescence excitation spectroscopy, a 2nd emission band, occurring at a higher energy, was identified in the spectrum of the multiple quantum well structure containing the InGaN prelayer, originating from the first quantum well in the stack. Band structure calculations revealed that a reduction in the resultant electric field occurred in the quantum well immediately adjacent to the InGaN prelayer, therefore leading to a reduction in the strength of the quantum confined Stark effect in this quantum well. The partial suppression of the quantum confined Stark effect in this quantum well led to a modified (higher) emission energy and increased radiative recombination rate. Therefore, we ascribed the origin of the high energy emission band to recombination from the 1st quantum well in the structure. Study of the temperature dependent recombination dynamics of both samples showed that the decay time measured across the spectrum was strongly influenced by the 1st quantum well in the stack (in the sample containing the prelayer) leading to a shorter average room temperature lifetime in this sample. The room temperature internal quantum efficiency of the prelayer containing sample was found to be higher than the reference sample (36% compared to 25%) which was thus attributed to the faster radiative recombination rate of the 1st quantum well providing a recombination pathway that is more competitive with non-radiative recombination processes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/119/5/1.4941321.html;jsessionid=Mcw-p1bBP2PsvqMZODjiuxDL.x-aip-live-06?itemId=/content/aip/journal/jap/119/5/10.1063/1.4941321&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/119/5/10.1063/1.4941321&pageURL=http://scitation.aip.org/content/aip/journal/jap/119/5/10.1063/1.4941321'
Right1,Right2,Right3,