Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/119/8/10.1063/1.4942004
1.
1. Y. Ben-Zion and J. R. Rice, “ Slip patterns and earthquake populations along different classes of faults in elastic solids,” J. Geophys. Res.: Solid Earth. 100, 1295912983 (1995).
http://dx.doi.org/10.1029/94JB03037
2.
2. D. S. Fisher, K. Dahmen, S. Ramanathan, and Y. Ben-Zion, “ Statistics of earthquakes in simple models of heterogeneous faults,” Phys. Rev. Lett. 78, 48854888 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.4885
3.
3. K. A. Dahmen, Y. Ben-Zion, and J. T. Uhl, “ Micromechanical model for deformation in solids with universal predictions for stress-strain curves and slip avalanches,” Phys. Rev. Lett. 102, 175501 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.175501
4.
4. K. A. Dahmen, Y. Ben-Zion, and J. T. Uhl, “ A simple analytic theory for the statistics of avalanches in sheared granular materials,” Nat. Phys. 7, 554557 (2011).
http://dx.doi.org/10.1038/nphys1957
5.
5. Antonaglia, J. et al.Bulk metallic glasses deform via slip avalanches,” Phys. Rev. Lett. 112, 155501 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.155501
6.
6. J. Antonaglia et al., “ Tuned critical avalanche scaling in bulk metallic glasses,” Sci. Rep. 4, 4382 (2014).
http://dx.doi.org/10.1038/srep04382
7.
7. B. A. Sun, H. B. Yu, W. Jiao, H. Y. Bai, D. Q. Zhao, and W. H. Wang, “ Plasticity of ductile metallic glasses: A self-organized critical state,” Phys. Rev. Lett. 105, 035501 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.035501
8.
8. D. Schorlemmer, S. Wiemer, and M. Wyss, “ Variations in earthquake-size distribution across different stress regimes,” Nature 437, 539542 (2005).
http://dx.doi.org/10.1038/nature04094
9.
9. D. Schorlemmer, S. Wiemer, and M. Wyss, “ Earthquake statistics at Parkfield: 1. Stationarity of b-values,” J. Geophys. Res. Solid Earth 109, B12307 (2004).
http://dx.doi.org/10.1029/2004JB003234
10.
10. N. Friedman et al., “ Statistics of dislocation slip avalanches in nanosized single crystals show tuned critical behavior predicted by a simple mean field model,” Phys. Rev. Lett. 109, 095507 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.095507
11.
11. M. Zaiser, “ Scale invariance in plastic flow of crystalline solids,” Adv. Phys. 55, 185245 (2006).
http://dx.doi.org/10.1080/00018730600583514
12.
12. J. T. Uhl et al., “ Universal quake statistics: From compressed nanocrystals to earthquakes,” Sci. Rep. 5, 16493 (2015).
http://dx.doi.org/10.1038/srep16493
13.
13. C. A. Schuh, T. C. Hufnagel, and U. Ramamurtry, “ Overview No. 144—Mechanical behavior of amorphous alloys,” Acta Mater. 55, 40674109 (2007).
http://dx.doi.org/10.1016/j.actamat.2007.01.052
14.
14. E. R. Homer, “ Examining the initial stages of shear localization in amorphous metals,” Acta Mater. 63, 4453 (2014).
http://dx.doi.org/10.1016/j.actamat.2013.09.050
15.
15. S. X. Song, X.-L. Wang, and T. G. Nieh, “ Capturing shear band propagation in a Zr-based metallic glass using a high-speed camera,” Scr. Mater. 62, 847850 (2010).
http://dx.doi.org/10.1016/j.scriptamat.2010.02.017
16.
16. W. J. Wright, R. R. Byer, and X. J. Gu, “ High speed imaging of a bulk metallic glass during uniaxial compression,” App. Phys. Lett. 102, 241920 (2013).
http://dx.doi.org/10.1063/1.4811744
17.
17. R. T. Qu, Z. Q. Liu, G. Wang, and Z. F. Zhang, “ Progressive shear band propagation in metallic glasses under compression,” Acta Mater. 91, 1933 (2015).
http://dx.doi.org/10.1016/j.actamat.2015.03.026
18.
18. W. J. Wright, M. W. Samale, T. C. Hufnagel, M. M. LeBlanc, and J. N. Florando, “ Studies of shear band velocity using spatially and temporally resolved measurements of strain during quasistatic compression of a bulk metallic glass,” Acta Mater. 57, 46394648 (2009).
http://dx.doi.org/10.1016/j.actamat.2009.06.013
19.
19. W. F. Wu, Y. Li, and C. A. Schuh, “ Strength, plasticity and brittleness of bulk metallic glasses under compression: Statistical and geometric effects,” Philos. Mag. 88, 7189 (2008).
http://dx.doi.org/10.1080/14786430701762619
20.
20. Z. Han, W. F. Wu, Y. Li, Y. J. Wei, and H. J. Gao, “ An instability index of shear band for plasticity in metallic glasses,” Acta Mater. 57, 13671372 (2009).
http://dx.doi.org/10.1016/j.actamat.2008.11.018
21.
21. G. Tsekenis, J. T. Uhl, N. Goldenfeld, and K. A. Dahmen, “ Determination of the universality class of crystal plasticity,” EPL 101, 36003 (2013).
http://dx.doi.org/10.1209/0295-5075/101/36003
22.
22. E. K. H. Salje and K. A. Dahmen, “ Crackling noise in disordered materials,” Annu. Rev. Condens. Matter Phys. 5, 233254 (2014).
http://dx.doi.org/10.1146/annurev-conmatphys-031113-133838
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.4942004 for the derivation of Equation (1) as well as image correlation of shear banding events.[Supplementary Material]
24.
24. S. K. Slaughter, F. Kertis, E. Deda, X. J. Gu, W. J. Wright, and T. C. Hufnagel, “ Shear bands in metallic glass are not necessarily hot,” APL Mater. 2, 096110 (2014).
http://dx.doi.org/10.1063/1.4895605
25.
25. D. Klaumünzer, A. Lazarev, R. Maaß, F. H. Dalla Torre, A. Vinogradov, and J. F. Löffler, “ Probing shear-band initiation in metallic glasses,” Phys. Rev. Lett. 107, 185502 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.185502
26.
26. R. Maaß, D. Klaumünzer, E. I. Preiß, P. M. Derlet, and J. F. Löffler, “ Single shear-band plasticity in a bulk metallic glass at cryogenic temperature,” Scr. Mater. 66, 231234 (2012).
http://dx.doi.org/10.1016/j.scriptamat.2011.10.044
27.
27. P. Thurnheer, R. Maaß, K. J. Laws, S. Pogatscher, and J. F. Löffler, Acta Mater. 96, 428436 (2015).
http://dx.doi.org/10.1016/j.actamat.2015.05.028
http://aip.metastore.ingenta.com/content/aip/journal/jap/119/8/10.1063/1.4942004
Loading
/content/aip/journal/jap/119/8/10.1063/1.4942004
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/119/8/10.1063/1.4942004
2016-02-29
2016-12-05

Abstract

Two distinct types of slip events occur during serrated plastic flow of bulk metallic glasses. These events are distinguished not only by their size but also by distinct stress drop rate profiles. Small stress drop serrations have fluctuating stress drop rates (with maximum stress drop rates ranging from 0.3–1 GPa/s), indicating progressive or intermittent propagation of a shear band. The large stress drop serrations are characterized by sharply peaked stress drop rate profiles (with maximum stress drop rates of 1–100 GPa/s). The propagation of a large slip is preceded by a slowly rising stress drop rate that is presumably due to the percolation of slipping weak spots prior to the initiation of shear over the entire shear plane. The onset of the rapid shear event is accompanied by a burst of acoustic emission. These large slips correspond to simultaneous shear with uniform sliding as confirmed by direct high-speed imaging and image correlation. Both small and large slip events occur throughout plastic deformation. The significant differences between these two types require that they be carefully distinguished in both modeling and experimental efforts.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/119/8/1.4942004.html;jsessionid=bVyCMKIxkwjfUDBzgpH5LJaY.x-aip-live-03?itemId=/content/aip/journal/jap/119/8/10.1063/1.4942004&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/119/8/10.1063/1.4942004&pageURL=http://scitation.aip.org/content/aip/journal/jap/119/8/10.1063/1.4942004'
Right1,Right2,Right3,