Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/119/9/10.1063/1.4943164
1.
1. A. Miskowiec , B. Anderson , A. Huq , E. Mamontov , K. W. Herwig , L. Trowbridge , and A. Rondinone , Mol. Phys. 114, 61 (2016).
http://dx.doi.org/10.1080/00268976.2015.1084056
2.
2. A. Miskowiec , M. C. Kirkegaard , A. Huq , E. Mamontov , K. W. Herwig , L. Trowbridge , A. Rondinone , and B. Anderson , J. Phys. Chem. A 119, 11900 (2015).
http://dx.doi.org/10.1021/acs.jpca.5b09296
3.
3. Y. L. Suponitskii , A. A. Tsvetkov , V. P. Seleznev , and B. V. Gromov , Russ. J. Phys. Chem. 45, 995 (1971).
4.
4. W. H. Zachariasen , Acta Crystallogr. 1, 277 (1948).
http://dx.doi.org/10.1107/S0365110X48000764
5.
5. M. Atoji and M. J. McDermott , Acta Crystallogr., Sect. B 26, 1540 (1970).
http://dx.doi.org/10.1107/S0567740870004454
6.
6. V. P. Seleznev , A. A. Tsvetkov , B. N. Sudarikov , and B. V. Gromov , Russ. J. Inorg. Chem. 17, 2587 (1972).
7.
7. Y. N. Mikhailov , Y. E. Gorbunova , I. P. Stolyarov , and I. I. Moiseev , Dokl. Akad. Nauk 380, 779 (2001).
8.
8. F. Morato , J. M. Fulconis , F. Rouquérol , and R. Fourcade , J. Fluorine Chem. 91, 69 (1998).
http://dx.doi.org/10.1016/S0022-1139(98)00214-0
9.
9. A. A. Lychev , V. A. Mikhalev , and D. N. Suglobov , Radiokhimiya 32, 7 (1991).
10.
10. N. Q. Dao , Inorg. Chim. Acta 95, 165 (1984).
http://dx.doi.org/10.1016/S0020-1693(00)87613-6
11.
11. Q. Wang and R. M. Pitzer , J. Phys. Chem. A 105, 8370 (2001).
http://dx.doi.org/10.1021/jp004009z
12.
12. V. Vallet , U. Wahlgren , B. Schimmelpfennig , Z. Szabó , and I. Grenthe , J. Am. Chem. Soc. 123, 11999 (2001).
http://dx.doi.org/10.1021/ja015935+
13.
13. I. Infante and L. Visscher , J. Comput. Chem. 25, 386 (2004).
http://dx.doi.org/10.1002/jcc.10383
14.
14. V. Vallet , U. Wahlgren , Z. Szabó , and I. Grenthe , Inorg. Chem. 41, 5626 (2002).
http://dx.doi.org/10.1021/ic025713s
15.
15. M. Bühl , Can. J. Chem. 87, 818 (2009).
http://dx.doi.org/10.1139/V08-182
16.
16. Z. Szabó , J. Glaser , and I. Grenthe , Inorg. Chem. 35, 2036 (1996).
http://dx.doi.org/10.1021/ic951140q
17.
17. K. Müller , H. Foerstendorf , S. Tsushima , V. Brendler , and G. Bernhard , J. Phys. Chem. A 113, 6626 (2009).
http://dx.doi.org/10.1021/jp9008948
18.
18. W. A. Kamitakahara and N. Wada , Phys. Rev. E 77, 041503 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.041503
19.
19. J. Conard , H. Hestrade-Szwarkopf , C. Poinsignon , and A. J. Dianoux , J. Phys., Colloq. 45, C7-169 (1984).
http://dx.doi.org/10.1051/jphyscol:1984718
20.
20. V. Crupi , D. Majolino , and V. Venuti , J. Phys.: Condens. Matter. 16, S5297 (2004).
http://dx.doi.org/10.1088/0953-8984/16/45/001
21.
21. E. Mamontov and K. W. Herwig , Rev. Sci. Instrum. 82, 085109 (2011).
http://dx.doi.org/10.1063/1.3626214
22.
22. M. Bèe , Quasielastic Neutron Scattering ( Adam Hilger, Bristol, England, 1988), pp. 369385.
23.
23. F. Volino and A. J. Dianoux , Mol. Phys. 41, 271 (1980).
http://dx.doi.org/10.1080/00268978000102761
24.
24. J. Teixeira , M. C. Bellissent-Funel , S. H. Chen , and A. J. Dianoux , Phys. Rev. A 31, 1913 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1913
25.
25. A. A. Tsvetkov , V. P. Seleznev , B. N. Sudarikov , and B. V. Gromov , Russ. J. Inorg. Chem. 17, 2020 (1972).
26.
26. J. Swenson , R. Bergman , and W. S. Howells , J. Chem. Phys. 113, 2873 (2000).
http://dx.doi.org/10.1063/1.1305870
27.
27. R. Kiefersauer , M. Than , H. Dobbek , L. Gremer , M. Melero , S. Strobl , J. Dias , T. Soulimane , and R. Huber , J. Appl. Crystallogr. 33, 1223 (2000).
http://dx.doi.org/10.1107/S0021889800008049
28.
28. J. Sanchez-Weatherby , M. Bowler , J. Huet , A. Gobbo , F. Felisaz , B. Lavault , R. Moya , J. Kadlec , B. G. Ravelli , and F. Cipriani , Acta Crystallogr., Sect. D 65, 1237 (2009).
http://dx.doi.org/10.1107/S0907444909037822
29.
29. J. Dura , D. Pierce , C. Majkrzak , N. Maliszewskyj , D. McGillivray , M. Lösche , K. V. O'Donovan , M. Mihailescu , U. Perez-Salas , D. Worcester , and S. White , Rev. Sci. Instrum. 77, 074301 (2006).
http://dx.doi.org/10.1063/1.2219744
30.
30. M. Park , A. Nedoma , P. Geissler , N. Balsara , A. Jackson , and D. Cookson , Macromolecules 41, 2271 (2008).
http://dx.doi.org/10.1021/ma702320t
31.
31. S. M. Chathoth , L. He , E. Mamontov , and Y. B. Melnichenko , Microporous Mesoporous Mater. 148, 101 (2012).
http://dx.doi.org/10.1016/j.micromeso.2011.07.019
32.
32. S. M. Chathoth , E. Mamontov , Y. B. Melnichenko , and M. Zamponi , Microporous Mesoporous Mater. 132, 148 (2010).
http://dx.doi.org/10.1016/j.micromeso.2010.02.012
33.
33. J. Perrin , S. Lyonnard , and F. Volino , J. Phys. Chem. C 111, 3393 (2007).
http://dx.doi.org/10.1021/jp065039q
http://aip.metastore.ingenta.com/content/aip/journal/jap/119/9/10.1063/1.4943164
Loading
/content/aip/journal/jap/119/9/10.1063/1.4943164
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/119/9/10.1063/1.4943164
2016-03-04
2016-12-10

Abstract

The structural phase diagram of uranyl fluoride (UOF), while incomplete, contains at least one anhydrous crystal structure and a second, zeolite-like structure with the formula [(UOF)(HO)] ⋅ (HO) that can be produced by adding water to the anhydrous structure. While traditional diffraction measurements can easily differentiate these crystals, additional aqueous structures (in general of the form UOF + xHO) have been proposed as well. We present results using a novel sample environment setup to intercalate water a quasielastic neutron scatteringmeasurement over the course of 86 h. Our sample environment allows low-pressure (<2 atm) humid air flow across the sample coupled with a system to control the relative humidity of this air flow between 10% and 70%. The water dynamics in UOF and [(UOF)(HO)] ⋅ (HO) are sufficiently different to distinguish them, with water in the latter executing a restricted diffusion ( = 2.7 × 10−6 cm2/s) within the structure's accessible pores ( = 3.17 Å) such that the dynamics can be used as a fingerprinting tool. We confirm that water vaporpressure is the driving thermodynamic force for the conversion of the anhydrous structure to [(UOF)(HO)] ⋅ (HO), and we demonstrate the feasibility of extending this approach to aqueous forms of UOF + xHO. This method has general applicability to systems in which water content itself is a driving variable for structural or dynamical phase transitions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/119/9/1.4943164.html;jsessionid=gnpSjBkar9oA64hCf2YmCrxl.x-aip-live-02?itemId=/content/aip/journal/jap/119/9/10.1063/1.4943164&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/119/9/10.1063/1.4943164&pageURL=http://scitation.aip.org/content/aip/journal/jap/119/9/10.1063/1.4943164'
Right1,Right2,Right3,