Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/10/10.1063/1.4961465
1.
M. C. Schubert, H. Habenicht, and W. Warta, IEEE J. Photovoltaics 1, 168 (2011).
http://dx.doi.org/10.1109/JPHOTOV.2011.2169942
2.
H. Habenicht, M. C. Schubert, and W. Warta, J. Appl. Phys. 108, 34909 (2010).
http://dx.doi.org/10.1063/1.3459892
3.
D. Macdonald, J. Tan, and T. Trupke, J. Appl. Phys. 103, 73710 (2008).
http://dx.doi.org/10.1063/1.2903895
4.
S. Y. Lim, F. E. Rougieux, and D. Macdonald, Appl. Phys. Lett. 103, 92105 (2013).
http://dx.doi.org/10.1063/1.4819096
5.
K. Graff, Metal Impurities in Silicon-Device Fabrication ( Springer, Berlin, 1999).
6.
S. Rein, T. Rehrl, W. Warta, and S. W. Glunz, J. Appl. Phys. 91, 2059 (2002).
http://dx.doi.org/10.1063/1.1428095
7.
J. D. Murphy, K. Bothe, R. Krain, V. V. Voronkov, and R. J. Falster, J. Appl. Phys. 111, 113709 (2012).
http://dx.doi.org/10.1063/1.4725475
8.
S. Rein, Lifetime Spectroscopy: A Method of Defect Characterization in Silicon for Photovoltaic Applications ( Springer-Verlag, Berlin, 2005).
9.
L. E. Mundt, M. C. Schubert, J. Schön, B. Michl, T. Niewelt, F. Schindler, and W. Warta, IEEE J. Photovoltaics 5, 1503 (2015).
http://dx.doi.org/10.1109/JPHOTOV.2015.2447837
10.
J. Haunschild, I. Reis, J. Geilker, and S. Rein, Phys. Status Solidi RRL 5, 199 (2011).
http://dx.doi.org/10.1002/pssr.201105183
11.
R. Falster and V. Voronkov, Mater. Sci. Forum 2008, 45.
http://dx.doi.org/10.4028/www.scientific.net/MSF.573-574.45
12.
J. D. Murphy, R. E. McGuire, K. Bothe, V. V. Voronkov, and R. J. Falster, Sol. Energy Mater. Sol. Cells 120, 402 (2014).
http://dx.doi.org/10.1016/j.solmat.2013.06.018
13.
R. Falster, V. Voronkov, and F. Quast, Phys. Status Solidi B 222, 219 (2000).
http://dx.doi.org/10.1002/1521-3951(200011)222:1<219::AID-PSSB219>3.0.CO;2-U
14.
K. Nakajima, S. Ono, R. Murai, and Y. Kaneko, J. Electron. Mater. 45, 2837 (2016).
http://dx.doi.org/10.1007/s11664-016-4463-z
15.
M. Kivambe, D. M. Powell, S. Castellanos, M. A. Jensen, A. E. Morishige, K. Nakajima, K. Morishita, R. Murai, and T. Buonassisi, J. Cryst. Growth 407, 31 (2014).
http://dx.doi.org/10.1016/j.jcrysgro.2014.08.021
16.
K. Nakajima, R. Murai, S. Ono, K. Morishita, M. Kivambe, D. M. Powell, and T. Buonassisi, Jpn. J. Appl. Phys., Part 1 54, 15504 (2015).
http://dx.doi.org/10.7567/JJAP.54.015504
17.
J. D. Murphy, M. Al-Amin, K. Bothe, M. Olmo, V. V. Voronkov, and R. Falster, J. Appl. Phys. 118, 215706 (2015).
http://dx.doi.org/10.1063/1.4936852
18.
J. A. Giesecke, M. C. Schubert, B. Michl, F. Schindler, and W. Warta, Sol. Energy Mater. Sol. Cells 95, 1011 (2011).
http://dx.doi.org/10.1016/j.solmat.2010.12.016
19.
A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, Phys. Rev. B 86, 165202 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.165202
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/10/10.1063/1.4961465
Loading
/content/aip/journal/jap/120/10/10.1063/1.4961465
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/10/10.1063/1.4961465
2016-09-08
2016-09-27

Abstract

Identification of the lifetime limiting defects in silicon plays a key role in systematically optimizing the efficiency potential of material for solar cells. We present a technique based on temperature and injection dependent photoluminescence imaging to determine the energy levels and capture cross section ratios of Shockley–Read–Hall defects. This allows us to identify homogeneously and inhomogeneously distributed defects limiting the charge carrier lifetime in any silicon wafer. The technique is demonstrated on an n-type wafer grown with the non-contact crucible (NOC) method and an industrial Czochralski (Cz) wafer prone to defect formation during high temperature processing. We find that the energy levels for the circular distributed defects in the Cz wafer are in good agreement with literature data for homogeneously grown oxide precipitates. In contrast, the circular distributed defects found in NOC Si have significantly deeper trap levels, despite their similar appearance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/10/1.4961465.html;jsessionid=9exW0GokWQAQ3iH6vqu5rbnP.x-aip-live-02?itemId=/content/aip/journal/jap/120/10/10.1063/1.4961465&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/10/10.1063/1.4961465&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/10/10.1063/1.4961465'
Right1,Right2,Right3,