Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
B. J. Baliga, Semicond. Sci. Technol. 28, 074011 (2013).
Y. Saitoh, K. Sumiyoshi, M. Okada, T. Horii, T. Miyazaki, H. Shiomi, M. Ueno, K. Katayama, M. Kiyama, and T. Nakamura, Appl. Phys. Express 3, 081001 (2010).
K. S. Boutros, S. Chandrasekaran, W. B. Luo, and V. Mehrotra, in IEEE International Symposium on Power Semiconductor Devices ICs 2006 (ISPSD 2006) (2006), pp. 14.
Z. Bougrioua, J.-L. Farvacque, I. Moerman, P. Demeester, J. j. Harris, K. Lee, G. van Tendeloo, O. Lebedev, and E. j. Thrush, Phys. Status Solidi B 216, 571 (1999).<571::AID-PSSB571>3.0.CO;2-K
N. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng, and T. D. Moustakas, J. Appl. Phys. 83, 3656 (1998).
J. Xie, S. Mita, A. Rice, J. Tweedie, L. Hussey, R. Collazo, and Z. Sitar, Appl. Phys. Lett. 98, 202101 (2011).
Y. Cao, R. Chu, R. Li, M. Chen, R. Chang, and B. Hughes, Appl. Phys. Lett. 108, 062103 (2016).
J. L. Lyons, A. Janotti, and C. G. Van de Walle, Phys. Rev. B 89, 035204 (2014).
U. Kaufmann, M. Kunzer, H. Obloh, M. Maier, C. Manz, A. Ramakrishnan, and B. Santic, Phys. Rev. B 59, 5561 (1999).
D. Huang, F. Yun, M. A. Reshchikov, D. Wang, H. Morkoç, D. L. Rode, L. A. Farina, Ç. Kurdak, K. T. Tsen, S. S. Park, and K. Y. Lee, Solid-State Electron. 45, 711 (2001).
E. C. H. Kyle, S. W. Kaun, P. G. Burke, F. Wu, Y.-R. Wu, and J. S. Speck, J. Appl. Phys. 115, 193702 (2014).
R. Armitage, W. Hong, Q. Yang, H. Feick, J. Gebauer, E. R. Weber, S. Hautakangas, and K. Saarinen, Appl. Phys. Lett. 82, 3457 (2003).
A. Armstrong, A. R. Arehart, B. Moran, S. P. DenBaars, U. K. Mishra, J. S. Speck, and S. A. Ringel, Appl. Phys. Lett. 84, 374 (2004).
C. H. Seager, A. F. Wright, J. Yu, and W. Götz, J. Appl. Phys. 92, 6553 (2002).
D. D. Koleske, A. E. Wickenden, R. L. Henry, and M. E. Twigg, J. Cryst. Growth 242, 55 (2002).
A. Koukitu and Y. Kumagai, J. Phys.: Condens. Matter 13, 6907 (2001).
H. Heinke, V. Kirchner, S. Einfeldt, and D. Hommel, Appl. Phys. Lett. 77, 2145 (2000).
S. Mita, R. Collazo, A. Rice, R. F. Dalmau, and Z. Sitar, J. Appl. Phys. 104, 013521 (2008).
J. L. Lyons, A. Janotti, and C. G. V. de Walle, Appl. Phys. Lett. 97, 152108 (2010).
A. Ishibashi, H. Takeishi, M. Mannoh, Y. Yabuuchi, and Y. Ban, J. Electron. Mater. 25, 799 (1996).
M. Yoshida, H. W. H. Watanabe, and F. U. F. Uesugi, J. Electrochem. Soc. 132, 677 (1985).
T. G. Mihopoulos, V. Gupta, and K. F. Jensen, J. Cryst. Growth 195, 733 (1998).
G. Arens, H. Heinecke, N. Pütz, H. Lüth, and P. Balk, J. Cryst. Growth 76, 305 (1986).
M. N. Gurusinghe and T. G. Andersson, Phys. Rev. B 67, 235208 (2003).
Z. Bryan, M. Hoffmann, J. Tweedie, R. Kirste, G. Callsen, I. Bryan, A. Rice, M. Bobea, S. Mita, J. Xie, Z. Sitar, and R. Collazo, J. Electron. Mater. 42, 815 (2013).
M. P. Hoffmann, J. Tweedie, R. Kirste, Z. Bryan, I. Bryan, M. Gerhold, Z. Sitar, and R. Collazo, Proc. SPIE 8986, 89860T (2014).
Z. Bryan, I. Bryan, B. E. Gaddy, P. Reddy, L. Hussey, M. Bobea, W. Guo, M. Hoffmann, R. Kirste, J. Tweedie, M. Gerhold, D. L. Irving, Z. Sitar, and R. Collazo, Appl. Phys. Lett. 105, 222101 (2014).

Data & Media loading...


Article metrics loading...



In the low doping range below 1 × 1017 cm−3, carbon was identified as the main defect attributing to the sudden reduction of the electron mobility, the electron mobility collapse, in n-type GaN grown by low pressure metalorganic chemical vapor deposition. Secondary ion mass spectroscopy has been performed in conjunction with C concentration and the thermodynamic Ga supersaturation model. By controlling the ammonia flow rate, the input partial pressure of Ga precursor, and the diluent gas within the Ga supersaturation model, the C concentration in Si-doped GaN was controllable from 6 × 1019 cm−3 to values as low as 2 × 1015 cm−3. It was found that the electron mobility collapsed as a function of free carrier concentration, once the Si concentration closely approached the C concentration. Lowering the C concentration to the order of 1015 cm−3 by optimizing Ga supersaturation achieved controllable free carrier concentrations down to 5 × 1015 cm−3 with a peak electron mobility of 820 cm2/V s without observing the mobility collapse. The highest electron mobility of 1170 cm2/V s was obtained even in metalorganic vapor deposition-grown GaN on sapphire substrates by optimizing growth parameters in terms of Ga supersaturation to reduce the C concentration.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd