Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
X. Zhou and G. Hu, Phys. Rev. B 79, 195109 (2009).
R. Zhu, X. N. Liu, G. L. Huang, H. H. Huang, and C. T. Sun, Phys. Rev. B 86, 144307 (2012).
Y. Lai, Y. Wu, P. Sheng, and Z.-Q. Zhang, Nat. Mater. 10, 620 (2011).
Y. Wu and Z.-Q. Zhang, Phys. Rev. B 79, 195111 (2009).
A. P. Liu, R. Zhu, X. N. Liu, G. K. Hu, and G. L. Huang, Wave Motion 49, 411 (2012).
H. J. Lee, H. W. Kim, and Y. Y. Kim, Appl. Phys. Lett. 98, 241912 (2011).
X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, Phys. Rev. E 71, 046610 (2005).
B.-I. Popa and S. A. Cummer, Phys. Rev. B 80, 174303 (2009).
J. H. Park, H. J. Lee, and Y. Y. Kim, J. Appl. Phys. 119, 034901 (2016).
Y. Liu, S. Guenneau, and B. Gralak, Phys. Rev. B 88, 165104 (2013).
J. H. Park, P. S. Ma, and Y. Y. Kim, Struct. Multidiscip. Optim. 51, 1199 (2015).
V. Laude, Y. Achaoui, S. Benchabane, and A. Khelif, Phys. Rev. B 80, 092301 (2009).
L. Sanchis, A. Håkansson, F. Cervera, and J. Sánchez-Dehesa, Phys. Rev. B 67, 035422 (2003).
D. Torrent and J. Sánchez-Dehesa, New J. Phys. 10, 023004 (2008).
R. Zhu, X. N. Liu, G. K. Hu, C. T. Sun, and G. L. Huang, Nat. Commun. 5, 5510 (2014).
D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
Q. Ni and J. Cheng, Phys. Rev. B 72, 014305 (2005).
Z. Hou, F. Wu, X. Fu, and Y. Liu, Phys. Rev. E 71, 037604 (2005).
Q. Ni and J. Cheng, J. Appl. Phys. 101, 073515 (2007).
L. Zigoneanu, B.-I. Popa, A. F. Starr, and S. A. Cummer, J. Appl. Phys. 109, 054906 (2011).
X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, Phys. Rev. E 70, 016608 (2004).
R. Zhao, T. Koschny, and C. M. Soukoulis, Opt. Express 18, 14553 (2010).
X. Jiang, B. Liang, X.-Y. Zou, L.-L. Yin, and J.-C. Cheng, Appl. Phys. Lett. 104, 083510 (2014).
P. A. Belov, R. Marqués, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, Phys. Rev. B 67, 113103 (2003).
R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, Phys. Rev. Lett. 102, 127405 (2009).
A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Yu. S. Kivshar, and P. A. Belov, Phys. Rev. B 84, 115438 (2011).
S. S. Kruk, D. A. Powell, A. Minovich, D. N. Neshev, and Y. S. Kivshar, Opt. Express 20, 15100 (2012).
C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, Phys. Rev. B 77, 195328 (2008).
Z. H. Jiang, J. A. Bossard, X. Wang, and D. H. Werner, J. Appl. Phys. 109, 013515 (2011).
B. A. Auld, Acoustic Fields and Waves in Solids ( John Wiley and Sons, New York, 1973).
J. L. Rose, Ultrasonic Waves in Solid Media ( Cambridge University Press, Cambridge, 1999).
B. Hosten, J. Acoust. Soc. Am. 89, 2745 (1991).
B. Hosten and M. Castaings, J. Acoust. Soc. Am. 94, 1488 (1993).
B. Hosten, M. Deschamps, and B. R. Tittmann, J. Acoust. Soc. Am. 82, 1763 (1987).
C. Rockstuhl, T. Paul, F. Lederer, T. Pertsch, T. Zentgraf, T. P. Meyrath, and H. Giessen, Phys. Rev. B 77, 035126 (2008).
W.-C. Chen, A. Totachawattana, K. Fan, J. L. Ponsetto, A. C. Strikwerda, X. Zhang, R. D. Averitt, and W. J. Padilla, Phys. Rev. B 85, 035112 (2012).
L. L. Hou, J. Y. Chin, X. M. Yang, X. Q. Lin, R. Liu, F. Y. Xu, and T. J. Cui, J. Appl. Phys. 103, 064904 (2008).
Å. Björck, Numerical Methods for Least Squares Problems ( Society for Industrial and Applied Mathematics, Philadelphia, 1996).
P. S. Ma, H. J. Lee, and Y. Y. Kim, J. Acoust. Soc. Am. 138, EL77 (2015).
S. Arslanagic, T. V. Hansen, N. A. Mortensen, A. H. Gregersen, O. Sigmund, R. W. Ziolkowski, and O. Breinbjerg, IEEE Antennas Propag. Mag. 55, 91 (2013).
M. K. Lee, P. S. Ma, I. K. Lee, H. W. Kim, and Y. Y. Kim, Appl. Phys. Lett. 98, 011909 (2011).

Data & Media loading...


Article metrics loading...



In this paper, the scattering (S-) parameter retrieval method is presented specifically for anisotropic elastic metamaterials; so far, no retrieval has been accomplished when elastic metamaterials exhibit fully anisotropic behavior. Complex constitutive property and intrinsic scattering behavior of elastic metamaterials make their characterization far more complicated than that for acoustic and electromagnetic metamaterials. In particular, elastic metamaterials generally exhibit anisotropic scattering behavior due to higher scattering modes associated with shear deformation. They also exhibit nonlocal responses to some degrees, which originate from strong multiple scattering interactions even in the long wavelength limit. Accordingly, the conventional S-parameter retrieval methods cannot be directly used for elastic metamaterials, because they determine only the diagonal components in effective tensor property. Also, the conventional methods simply use the analytic inversion formulae for the material characterization so that inherent nonlocality cannot be taken into account. To establish a retrieval method applicable to anisotropic elastic metamaterials, we propose an alternative S-parameter method to deal with full anisotropy of elastic metamaterials. To retrieve the whole effective anisotropic parameter, we utilize not only normal but also oblique wave incidences. For the retrieval, we first retrieve the ratio of the effective stiffness tensor to effective density and then determine the effective density. The proposed retrieval method is validated by characterizing the effective material parameters of various types of non-resonant anisotropic metamaterials. It is found that the whole effective parameters are retrieved consistently regardless of used retrieval conditions in spite of inherent nonlocality.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd