Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/10/10.1063/1.4962286
1.
M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovoltaics 24(1), 311 (2016).
http://dx.doi.org/10.1002/pip.2728
2.
M. A. Green, Nat. Energy 1, 15015 (2016).
http://dx.doi.org/10.1038/nenergy.2015.15
3.
See http://www.energy.gov/sites/prod/files/2015/09/f26/NREL%20Paper%2009-16-15.pdf for “Technology Advances Needed for Photovoltaics to Achieve Widespread Grid Price Parity” (accessed June 1, 2016).
4.
C. M. Parish and P. E. Russell, “ Scanning cathodoluminescence microscopy,” Adv. Imaging Electron Phys. 147, 1135 (2007).
http://dx.doi.org/10.1016/S1076-5670(07)47001-X
5.
D. Abou-Ras, M. Nichterwitz, M. J. Romero, and S. S. Schmidt, “ Electron microscopy on thin films for solar cells,” in Advanced Characterization Techniques for Thin Film Solar Cells, edited by U. Rau, D. Abou-Ras, and T. Kirchartz ( John Wiley & Sons, 2011).
6.
P. R. Edwards and R. W. Martin, Semicond. Sci. Technol. 26(6), 064005 (2011).
http://dx.doi.org/10.1088/0268-1242/26/6/064005
7.
J. Moseley, M. Al-Jassim, H. Moutinho, H. Guthrey, W. Metzger, and R. Ahrenkiel, Appl. Phys. Lett. 103(23), 233103 (2013).
http://dx.doi.org/10.1063/1.4838015
8.
J. Moseley, M. M. Al-Jassim, D. Kuciauskas, H. R. Moutinho, N. Paudel, H. L. Guthrey, Y. Yan, W. K. Metzger, and R. K. Ahrenkiel, IEEE J. Photovoltaics 4(6), 16711679 (2014).
http://dx.doi.org/10.1109/JPHOTOV.2014.2359732
9.
B. Mendis, D. Gachet, J. Major, and K. Durose, Phys. Rev. Lett. 115(21), 218701 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.218701
10.
A. Taylor, J. Major, G. Kartopu, D. Lamb, J. Duenow, R. Dhere, X. Maeder, S. Irvine, K. Durose, and B. Mendis, Sol. Energy Mater. Sol. Cells 141, 341349 (2015).
http://dx.doi.org/10.1016/j.solmat.2015.06.010
11.
M. Potter, D. Halliday, M. Cousins, and K. Durose, Thin Solid Films 361, 248252 (2000).
http://dx.doi.org/10.1016/S0040-6090(99)00782-8
12.
J. D. Poplawsky, N. R. Paudel, C. Li, C. M. Parish, D. Leonard, Y. Yan, and S. J. Pennycook, Adv. Energy Mater. 4(15), 1400454 (2014).
http://dx.doi.org/10.1002/aenm.201400454
13.
B. A. Korevaar, G. Zorn, K. C. Raghavan, J. R. Cournoyer, and K. Dovidenko, Prog. Photovoltaics 23(11), 14661474 (2015).
http://dx.doi.org/10.1002/pip.2576
14.
J. Burst, W. Rance, T. Barnes, M. Reese, J. Li, D. Kuciauskas, M. Steiner, T. Gessert, K. Zhang, and C. Hamilton, paper presented at the 2012 38th IEEE Photovoltaic Specialists Conference (PVSC), 2012.
15.
W. Rance, J. M. Burst, M. O. Reese, D. Meysing, C. A. Wolden, T. A. Gessert, S. Garner, P. Cimo, and T. M. Barnes, paper presented at the 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), 2013.
16.
H. Demers, N. Poirier-Demers, M. R. Phillips, N. de Jonge, and D. Drouin, Microsc. Microanal. 18(06), 12201228 (2012).
http://dx.doi.org/10.1017/S1431927612013414
17.
C. Kraft, H. Metzner, M. Hädrich, U. Reislöhner, P. Schley, G. Gobsch, and R. Goldhahn, J. Appl. Phys. 108(12), 124503 (2010).
http://dx.doi.org/10.1063/1.3517436
18.
T. Schmidt, K. Lischka, and W. Zulehner, Phys. Rev. B 45(16), 8989 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.8989
19.
M. A. Reshchikov, A. A. Kvasov, M. F. Bishop, T. McMullen, A. Usikov, V. Soukhoveev, and V. A. Dmitriev, Phys. Rev. B 84(7), 075212 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075212
20.
M. A. Reshchikov, J. Appl. Phys. 115(1), 012010 (2014).
http://dx.doi.org/10.1063/1.4838038
21.
H.-Y. Shin and C.-Y. Sun, J. Cryst. Growth 186(3), 354361 (1998).
http://dx.doi.org/10.1016/S0022-0248(97)00539-3
22.
V. Consonni, G. Feuillet, J. Bleuse, and F. Donatini, J. Appl. Phys. 101(6), 063522 (2007).
http://dx.doi.org/10.1063/1.2711412
23.
V. Consonni, G. Feuillet, and S. Renet, J. Appl. Phys. 99(5), 053502 (2006).
http://dx.doi.org/10.1063/1.2174117
24.
D. B. Holt and B. G. Yacobi, Extended Defects in Semiconductors: Electronic Properties, Device Effects and Structures ( Cambridge University Press, 2007).
25.
J. Moseley, W. K. Metzger, H. R. Moutinho, N. Paudel, H. L. Guthrey, Y. Yan, R. K. Ahrenkiel, and M. M. Al-Jassim, J. Appl. Phys. 118(2), 025702 (2015).
http://dx.doi.org/10.1063/1.4926726
26.
K. Ohata, J. Saraie, and T. Tanaka, Jpn. J. Appl. Phys., Part 1 12(8), 1198 (1973).
http://dx.doi.org/10.1143/JJAP.12.1198
27.
R. Pal, J. Dutta, S. Chaudhuri, and A. Pal, J. Phys. D: Appl. Phys. 26(4), 704 (1993).
http://dx.doi.org/10.1088/0022-3727/26/4/027
28.
B. E. McCandless and J. R. Sites, “ Cadmium telluride solar cells,” in Handbook of Photovoltaic Science and Engineering, edited by A. Luque and S. Hegedus, 2nd ed. ( John Wiley & Sons, 2011).
29.
Semiconductors: Basic Data, 2nd ed., edited by O. Madelung ( Springer, Berlin, 1982).
30.
W. Metzger, D. Albin, D. Levi, P. Sheldon, X. Li, B. Keyes, and R. Ahrenkiel, J. Appl. Phys. 94(5), 35493555 (2003).
http://dx.doi.org/10.1063/1.1597974
31.
W. Metzger, D. Albin, M. Romero, P. Dippo, and M. Young, J. Appl. Phys. 99(10), 103703 (2006).
http://dx.doi.org/10.1063/1.2196127
32.
L. Kranz, C. Gretener, J. Perrenoud, D. Jaeger, S. S. Gerstl, R. Schmitt, S. Buecheler, and A. N. Tiwari, Adv. Energy Mater. 4(7), 1301400 (2014).
http://dx.doi.org/10.1002/aenm.201301400
33.
J. D. Poplawsky, C. Li, N. R. Paudel, W. Guo, Y. Yan, and S. J. Pennycook, Sol. Energy Mater. Sol. Cells 150, 95101 (2016).
http://dx.doi.org/10.1016/j.solmat.2016.02.004
34.
D. Kuciauskas, P. Dippo, Z. Zhao, L. Cheng, A. Kanevce, W. K. Metzger, and M. Gloeckler, IEEE J. Photovoltaics 5(1), 366371 (2015).
http://dx.doi.org/10.1109/JPHOTOV.2014.2359738
35.
W. Stadler, D. Hofmann, H. Alt, T. Muschik, B. Meyer, E. Weigel, G. Müller-Vogt, M. Salk, E. Rupp, and K. Benz, Phys. Rev. B 51(16), 10619 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.10619
36.
M. J. Romero, D. S. Albin, M. M. Al-Jassim, X. Wu, H. R. Moutinho, and R. G. Dhere, Appl. Phys. Lett. 81(16), 29622964 (2002).
http://dx.doi.org/10.1063/1.1515119
37.
K. Alberi, B. Fluegel, M. J. DiNezza, S. Liu, Y.-H. Zhang, and A. Mascarenhas, Appl. Phys. Express 7(6), 065503 (2014).
http://dx.doi.org/10.7567/APEX.7.065503
38.
A. Alkauskas, M. D. McCluskey, and C. G. Van de Walle, J. Appl. Phys. 119(18), 181101 (2016).
http://dx.doi.org/10.1063/1.4948245
39.
I. Visoly-Fisher, S. R. Cohen, K. Gartsman, A. Ruzin, and D. Cahen, Adv. Funct. Mater. 16(5), 649660 (2006).
http://dx.doi.org/10.1002/adfm.200500396
40.
C.-S. Jiang, H. R. Moutinho, R. Dhere, and M. Al-Jassim, IEEE J. Photovoltaics 3(4), 13831388 (2013).
http://dx.doi.org/10.1109/JPHOTOV.2013.2276932
41.
M. Tuteja, P. Koirala, V. Palekis, S. MacLaren, C. S. Ferekides, R. W. Collins, and A. A. Rockett, J. Phys. Chem. C 120(13), 70207024 (2016).
http://dx.doi.org/10.1021/acs.jpcc.6b00874
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/10/10.1063/1.4962286
Loading
/content/aip/journal/jap/120/10/10.1063/1.4962286
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/10/10.1063/1.4962286
2016-09-09
2016-09-27

Abstract

We conducted 6 K cathodoluminescence (CL) spectrum imaging with a nanoscale electron beam on beveled surfaces of CdTe thin films at the critical stages of standard CdTe solar cell fabrication. We find that the through-thickness CL total intensity profiles are consistent with a reduction in grain-boundary recombination due to the CdCl treatment. The color-coded CL maps of the near-band-edge transitions indicate significant variations in the defect recombination activity at the micron and sub-micron scales within grains, from grain to grain, throughout the film depth, and between films with different processing histories. We estimated the grain-interior sulfur-alloying fraction in the interdiffused CdTe/CdS region of the CdCl-treated films from a sample of 35 grains and found that it is not strongly correlated with CL intensity. A kinetic rate-equation model was used to simulate grain-boundary (GB) and grain-interior CL spectra. Simulations indicate that the large reduction in the exciton band intensity and relatively small decrease in the lower-energy band intensity at CdTe GBs or dislocations can be explained by an enhanced electron-hole non-radiative recombination rate at the deep GB or dislocation defects. Simulations also show that higher GB concentrations of donors and/or acceptors can increase the lower-energy band intensity, while slightly decreasing the exciton band intensity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/10/1.4962286.html;jsessionid=dT_CWVv9cXK9swk1ie2buyC8.x-aip-live-03?itemId=/content/aip/journal/jap/120/10/10.1063/1.4962286&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/10/10.1063/1.4962286&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/10/10.1063/1.4962286'
Right1,Right2,Right3,