Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/10/10.1063/1.4962288
1.
C. A. Broderick, M. Usman, S. J. Sweeney, and E. P. O'Reilly, Semicond. Sci. Technol. 27, 094011 (2012).
http://dx.doi.org/10.1088/0268-1242/27/9/094011
2.
T. Fuyuki, K. Yoshida, R. Yoshioka, and M. Yoshimoto, Appl. Phys. Express 7, 082101 (2014).
http://dx.doi.org/10.7567/APEX.7.082101
3.
S. J. Sweeney and S. R. Jin, J. Appl. Phys. 113, 043110 (2013).
http://dx.doi.org/10.1063/1.4789624
4.
S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, and F. Schiettekatte, Appl. Phys. Lett. 82, 2245 (2003).
http://dx.doi.org/10.1063/1.1565499
5.
S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, Appl. Phys. Lett. 82, 3874 (2003).
http://dx.doi.org/10.1063/1.1581983
6.
M. P. Polak, P. Scharoch, and R. Kudrawiec, Semicond. Sci. Technol. 30, 094001 (2015).
http://dx.doi.org/10.1088/0268-1242/30/9/094001
7.
J. Yoshida, T. Kita, O. Wada, and K. Oe, Jpn. J. Appl. Phys., Part 1 42, 371 (2003).
http://dx.doi.org/10.1143/JJAP.42.371
8.
B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, Phys. Rev. Lett. 97, 067205 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.067205
9.
K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis, and A. Krotkus, Appl. Phys. Lett. 91, 051909 (2007).
http://dx.doi.org/10.1063/1.2768312
10.
R. D. Richards, A. R. Mohmad, J. P. R. David, C. J. Hunter, and F. Bastiman, IET Optoelectron. 10, 34 (2016).
http://dx.doi.org/10.1049/iet-opt.2015.0051
11.
R. Butkute, A. Geizutis, V. Pacebutas, B. Cechavicius, V. Bukauskas, R. Kundrotas, P. Ludewig, K. Volz, and A. Krotkus, Electron. Lett. 50, 1155 (2014).
http://dx.doi.org/10.1049/el.2014.1741
12.
M. Yoshimoto, S. Murata, A. Chayahara, Y. Horino, J. Saraie, and K. Oe, Jpn. J. Appl. Phys., Part 2 42, L1235 (2003).
http://dx.doi.org/10.1143/JJAP.42.L1235
13.
V. Bahrami-Yekta, T. Tiedje, and M. Masnadi-Shirazi, Semicond. Sci. Technol. 30, 094007 (2015).
http://dx.doi.org/10.1088/0268-1242/30/9/094007
14.
W. Bennarndt, G. Boehm, and M. C. Amann, J. Cryst. Growth 436, 56 (2016).
http://dx.doi.org/10.1016/j.jcrysgro.2015.11.021
15.
C. J. Hunter, F. Bastiman, A. R. Mohmad, R. Richards, J. S. Ng, S. J. Sweeney, and J. P. R. David, IEEE Photonics Technol. Lett. 24, 2191 (2012).
http://dx.doi.org/10.1109/LPT.2012.2225420
16.
T. Fuyuki, R. Yoshioka, K. Yoshida, and M. Yoshimoto, Appl. Phys. Lett. 103, 202105 (2013).
http://dx.doi.org/10.1063/1.4830273
17.
I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, Appl. Phys. Lett. 83, 2742 (2003).
http://dx.doi.org/10.1063/1.1616193
18.
B. Chen, A. L. Holmes, V. Khalfin, I. Kudryashov, and B. M. Onat, Laser Technology for Defense and Security VIII 8381, 83810F (2012).
http://dx.doi.org/10.1117/12.918764
19.
Y. S. Chiu, M. H. Ya, W. S. Su, and Y. F. Chen, J. Appl. Phys. 92, 5810 (2002).
http://dx.doi.org/10.1063/1.1513200
20.
M. Jo, M. Sato, S. Miyamura, H. Sasakura, H. Kumano, and I. Suemune, Nanoscale Res. Lett. 7, 1 (2012).
http://dx.doi.org/10.1186/1556-276X-7-1
21.
See https://arxiv.org/abs/1606.04657 for information about the structural properties of the sample.
22.
A. R. Mohmad, F. Bastiman, C. J. Hunter, J. S. Ng, S. J. Sweeney, and J. P. R. David, Appl. Phys. Lett. 99, 042107 (2011).
http://dx.doi.org/10.1063/1.3617461
23.
R. Kudrawiec, M. Syperek, P. Poloczek, J. Misiewicz, R. H. Mari, M. Shafi, M. Henini, Y. G. Gobato, S. V. Novikov, J. Ibanez, M. Schmidbauer, and S. I. Molina, J. Appl. Phys. 106, 023518 (2009).
http://dx.doi.org/10.1063/1.3168429
24.
S. Imhof, A. Thranhardt, A. Chernikov, M. Koch, N. S. Koster, K. Kolata, S. Chatterjee, S. W. Koch, X. F. Lu, S. R. Johnson, D. A. Beaton, T. Tiedje, and O. Rubel, Appl. Phys. Lett. 96, 131115 (2010).
http://dx.doi.org/10.1063/1.3374884
25.
M. Baranowski, M. Syperek, R. Kudrawiec, J. Misiewicz, J. A. Gupta, X. Wu, and R. Wang, Appl. Phys. Lett. 98, 061910 (2011).
http://dx.doi.org/10.1063/1.3548544
26.
M. Baranowski, M. Syperek, R. Kudrawiec, J. Misiewicz, J. A. Gupta, X. Wu, and R. Wang, J. Phys.: Condens. Matter 24, 185801 (2012).
http://dx.doi.org/10.1088/0953-8984/24/18/185801
27.
J. Hu, X. G. Xu, J. A. H. Stotz, S. P. Watkins, A. E. Curzon, M. L. W. Thewalt, N. Matine, and C. R. Bolognesi, Appl. Phys. Lett. 73, 2799 (1998).
http://dx.doi.org/10.1063/1.122594
28.
I. P. Seetoh, C. B. Soh, E. A. Fitzgerald, and S. J. Chua, Appl. Phys. Lett. 102, 101112 (2013).
http://dx.doi.org/10.1063/1.4795793
29.
Y. P. Varshni, Physica 34, 149 (1967).
http://dx.doi.org/10.1016/0031-8914(67)90062-6
30.
I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).
http://dx.doi.org/10.1063/1.1368156
31.
J. P. Reithmaier, R. Hoüger, H. Riechert, A. Heberle, G. Abstreiter, and G. Weimann, Appl. Phys. Lett. 56, 536 (1990).
http://dx.doi.org/10.1063/1.102737
32.
E. Luna, M. Wu, M. Hanke, J. Puustinen, M. Guina, and A. Trampert, Nanotechnology 27, 325603 (2016).
http://dx.doi.org/10.1088/0957-4484/27/32/325603
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/10/10.1063/1.4962288
Loading
/content/aip/journal/jap/120/10/10.1063/1.4962288
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/10/10.1063/1.4962288
2016-09-08
2016-09-29

Abstract

Photoluminescence (PL) properties of InGaAs/GaAsBi/InGaAs quantum well (QW) grown on GaAs substrates by gas source molecular beam epitaxy were studied by varying excitation power and temperature, respectively. The type-II transition energy shifts from 1.149 eV to 1.192 eV when increasing the excitation power from 10 mW to 150 mW at 4.5 K, which was ascribed to the band-bending effect. On the other hand, the type-II PL quenches quickly along with fast redshift with the increasing temperature due to the relaxation of the band bending caused by the thermal excitation process. An 8 band model was used to analyze the electronic properties and the band-bending effect in the type-II QW. The calculated subband levels and transition energy fit well with the experiment results, and two thermal activation energies of 8.7 meV and 50 meV, respectively, are deduced.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/10/1.4962288.html;jsessionid=mBoNSYrNbV2Ed--w-SDi9Jtn.x-aip-live-06?itemId=/content/aip/journal/jap/120/10/10.1063/1.4962288&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/10/10.1063/1.4962288&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/10/10.1063/1.4962288'
Right1,Right2,Right3,