Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
C. A. Broderick, M. Usman, S. J. Sweeney, and E. P. O'Reilly, Semicond. Sci. Technol. 27, 094011 (2012).
T. Fuyuki, K. Yoshida, R. Yoshioka, and M. Yoshimoto, Appl. Phys. Express 7, 082101 (2014).
S. J. Sweeney and S. R. Jin, J. Appl. Phys. 113, 043110 (2013).
S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, and F. Schiettekatte, Appl. Phys. Lett. 82, 2245 (2003).
S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, Appl. Phys. Lett. 82, 3874 (2003).
M. P. Polak, P. Scharoch, and R. Kudrawiec, Semicond. Sci. Technol. 30, 094001 (2015).
J. Yoshida, T. Kita, O. Wada, and K. Oe, Jpn. J. Appl. Phys., Part 1 42, 371 (2003).
B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, Phys. Rev. Lett. 97, 067205 (2006).
K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis, and A. Krotkus, Appl. Phys. Lett. 91, 051909 (2007).
R. D. Richards, A. R. Mohmad, J. P. R. David, C. J. Hunter, and F. Bastiman, IET Optoelectron. 10, 34 (2016).
R. Butkute, A. Geizutis, V. Pacebutas, B. Cechavicius, V. Bukauskas, R. Kundrotas, P. Ludewig, K. Volz, and A. Krotkus, Electron. Lett. 50, 1155 (2014).
M. Yoshimoto, S. Murata, A. Chayahara, Y. Horino, J. Saraie, and K. Oe, Jpn. J. Appl. Phys., Part 2 42, L1235 (2003).
V. Bahrami-Yekta, T. Tiedje, and M. Masnadi-Shirazi, Semicond. Sci. Technol. 30, 094007 (2015).
W. Bennarndt, G. Boehm, and M. C. Amann, J. Cryst. Growth 436, 56 (2016).
C. J. Hunter, F. Bastiman, A. R. Mohmad, R. Richards, J. S. Ng, S. J. Sweeney, and J. P. R. David, IEEE Photonics Technol. Lett. 24, 2191 (2012).
T. Fuyuki, R. Yoshioka, K. Yoshida, and M. Yoshimoto, Appl. Phys. Lett. 103, 202105 (2013).
I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, Appl. Phys. Lett. 83, 2742 (2003).
B. Chen, A. L. Holmes, V. Khalfin, I. Kudryashov, and B. M. Onat, Laser Technology for Defense and Security VIII 8381, 83810F (2012).
Y. S. Chiu, M. H. Ya, W. S. Su, and Y. F. Chen, J. Appl. Phys. 92, 5810 (2002).
M. Jo, M. Sato, S. Miyamura, H. Sasakura, H. Kumano, and I. Suemune, Nanoscale Res. Lett. 7, 1 (2012).
See for information about the structural properties of the sample.
A. R. Mohmad, F. Bastiman, C. J. Hunter, J. S. Ng, S. J. Sweeney, and J. P. R. David, Appl. Phys. Lett. 99, 042107 (2011).
R. Kudrawiec, M. Syperek, P. Poloczek, J. Misiewicz, R. H. Mari, M. Shafi, M. Henini, Y. G. Gobato, S. V. Novikov, J. Ibanez, M. Schmidbauer, and S. I. Molina, J. Appl. Phys. 106, 023518 (2009).
S. Imhof, A. Thranhardt, A. Chernikov, M. Koch, N. S. Koster, K. Kolata, S. Chatterjee, S. W. Koch, X. F. Lu, S. R. Johnson, D. A. Beaton, T. Tiedje, and O. Rubel, Appl. Phys. Lett. 96, 131115 (2010).
M. Baranowski, M. Syperek, R. Kudrawiec, J. Misiewicz, J. A. Gupta, X. Wu, and R. Wang, Appl. Phys. Lett. 98, 061910 (2011).
M. Baranowski, M. Syperek, R. Kudrawiec, J. Misiewicz, J. A. Gupta, X. Wu, and R. Wang, J. Phys.: Condens. Matter 24, 185801 (2012).
J. Hu, X. G. Xu, J. A. H. Stotz, S. P. Watkins, A. E. Curzon, M. L. W. Thewalt, N. Matine, and C. R. Bolognesi, Appl. Phys. Lett. 73, 2799 (1998).
I. P. Seetoh, C. B. Soh, E. A. Fitzgerald, and S. J. Chua, Appl. Phys. Lett. 102, 101112 (2013).
Y. P. Varshni, Physica 34, 149 (1967).
I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).
J. P. Reithmaier, R. Hoüger, H. Riechert, A. Heberle, G. Abstreiter, and G. Weimann, Appl. Phys. Lett. 56, 536 (1990).
E. Luna, M. Wu, M. Hanke, J. Puustinen, M. Guina, and A. Trampert, Nanotechnology 27, 325603 (2016).

Data & Media loading...


Article metrics loading...



Photoluminescence (PL) properties of InGaAs/GaAsBi/InGaAs quantum well (QW) grown on GaAs substrates by gas source molecular beam epitaxy were studied by varying excitation power and temperature, respectively. The type-II transition energy shifts from 1.149 eV to 1.192 eV when increasing the excitation power from 10 mW to 150 mW at 4.5 K, which was ascribed to the band-bending effect. On the other hand, the type-II PL quenches quickly along with fast redshift with the increasing temperature due to the relaxation of the band bending caused by the thermal excitation process. An 8 band model was used to analyze the electronic properties and the band-bending effect in the type-II QW. The calculated subband levels and transition energy fit well with the experiment results, and two thermal activation energies of 8.7 meV and 50 meV, respectively, are deduced.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd