Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/10/10.1063/1.4962310
1.
P. R. Wallace, Phys. Rev. 71, 622 (1947).
http://dx.doi.org/10.1103/PhysRev.71.622
2.
S. Reich, J. Maultzsch, and C. Thomsen, Phys. Rev. B 66, 035412 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.035412
3.
A. Bostwick, T. Ohta, J. L. McChesney, K. V. Emtsev, T. Seyller, K. Horn, and E. Rotenberg, New J. Phys. 9, 385 (2007).
http://dx.doi.org/10.1088/1367-2630/9/10/385
4.
K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, Nature 490, 192 (2012).
http://dx.doi.org/10.1038/nature11458
5.
A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
6.
W. Mönch, Electronic Properties of Semiconductor Interfaces ( Springer, Berlin, 2004).
7.
J. L. Freeouf, T. N. Jackson, S. E. Laux, and J. M. Woodall, Appl. Phys. Lett. 40, 634 (1982).
http://dx.doi.org/10.1063/1.93171
8.
J. H. Werner and H. H. Güttler, J. Appl. Phys. 69, 1522 (1991).
http://dx.doi.org/10.1063/1.347243
9.
R. Schmitsdorf, T. U. Kampen, and W. Mönch, Surf. Sci. 324, 249 (1995).
http://dx.doi.org/10.1016/0039-6028(94)00791-8
10.
N. F. Mott, Proc. Cambridge Philos. Soc. 34, 568 (1938).
http://dx.doi.org/10.1017/S0305004100020570
11.
W. Schottky, Phys. Z. 41, 570 (1940).
12.
S. Tongay, T. Schumann, and A. F. Hebard, Appl. Phys. Lett. 95, 222103 (2009).
http://dx.doi.org/10.1063/1.3268788
13.
X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, Nano Lett. 12, 2745 (2012).
http://dx.doi.org/10.1021/nl204414u
14.
S. Tongay, M. Lemaitre, X. Miao, B. Gila, B. R. Appleton, and A. F. Hebard, Phys. Rev. X 2, 011002 (2012).
http://dx.doi.org/10.1103/PhysRevX.2.011002
15.
C. Yim, N. McEvoy, and G. S. Duesberg, Appl. Phys. Lett. 103, 193106 (2013).
http://dx.doi.org/10.1063/1.4829140
16.
Y.-J. Lin and J.-J. Zeng, Appl. Surf. Sci. 322, 225 (2014).
http://dx.doi.org/10.1016/j.apsusc.2014.10.062
17.
S. Parui, R. Ruiter, P. J. Zomer, M. Wojtaszek, B. J. van Wees, and T. Banerjee, J. Appl. Phys. 116, 244505 (2014).
http://dx.doi.org/10.1063/1.4905110
18.
D. Tomer, S. Rajput, L. J. Hudy, C. H. Li, and L. Li, Nanotechnology 26, 215702 (2015).
http://dx.doi.org/10.1088/0957-4484/26/21/215702
19.
S. Riazimehr, A. Bablich, D. Schneider, S. Kataria, V. Passi, C. Yim, G. S. Duesberg, and M. C. Lemme, Solid-State Electron. 115, 207 (2016);
http://dx.doi.org/10.1016/j.sse.2015.08.023
S. Riazimehr, A. Bablich, D. Schneider, S. Kataria, V. Passi, C. Yim, G. S. Duesberg, and M. C. Lemme, private communication (02.03.2016).
20.
M. Zhu, X. Li, X. Li, X. Zang, Z. Zhen, D. Xie, Y. Fang, and H. Zhu, J. Appl. Phys. 119, 124303 (2016).
http://dx.doi.org/10.1063/1.4944945
21.
Th. Seyller, K. V. Emtsev, F. Speck, K.-Y. Gao, and L. Ley, Appl. Phys. Lett. 88, 242103 (2006).
http://dx.doi.org/10.1063/1.2213928
22.
S. A. Reshanov, K. V. Emtsev, F. Speck, K.-Y. Gao, T. K. Seyller, G. Pensl, and L. Ley, Phys. Status Solidi B 245, 1369 (2008).
http://dx.doi.org/10.1002/pssb.200844083
23.
S. Shivaraman, L. H. Herman, F. Rana, J. Park, and M. G. Spencer, Appl. Phys. Lett. 100, 183112 (2012).
http://dx.doi.org/10.1063/1.4711769
24.
D. Tomer, S. Rajput, L. J. Hudy, C. H. Li, and L. Li, Appl. Phys. Lett. 105, 021607 (2014).
http://dx.doi.org/10.1063/1.4890405
25.
Z. Khurelbaatar, Y.-H. Kil, K.-H. Shim, H. Cho, M.-J. Kim, Y.-T. Kim, and C.-J. Choi, J. Semicond. Technol. Sci. 15, 7 (2015).
http://dx.doi.org/10.5573/JSTS.2015.15.1.007
26.
R. S. Kim, T. H. Seo, M. J. Kim, K. M. Song, E.-K. Suh, and H. Kim, Nano Res. 8, 1327 (2015).
http://dx.doi.org/10.1007/s12274-014-0624-7
27.
C.-L. Tsai, Y.-J. Lin, and J.-H. Lin, J. Mater. Sci. Mater. Electron. 26, 3052 (2015).
http://dx.doi.org/10.1007/s10854-015-2796-7
28.
R. Yatskiv, J. Grym, K. Zdansky, and K. Piksova, Carbon 50, 3928 (2012).
http://dx.doi.org/10.1016/j.carbon.2012.04.047
29.
S. Larentis, J. R. Tolsma, B. Fallahazad, D. C. Dillen, K. Kim, A. H. MacDonald, and E. Tutuc, Nano Lett. 14, 2039 (2014).
http://dx.doi.org/10.1021/nl500212s
30.
Y.-F. Lin, W. Li, S.-L. Li, Y. Xu, A. Aparecido-Ferreira, K. Komatsu, H. Sun, S. Nakaharai, and K. Tsukagoshi, Nanoscale 6, 795 (2014).
http://dx.doi.org/10.1039/C3NR03677D
31.
H. Tian, Z. Tan, C. Wu, X. Wang, M. A. Mohammad, D. Xie, Y. Yang, J. Wang, L.-J. Li, J. Xu, and T.-L. Ren, Sci. Rep. 4, 5951 (2014).
http://dx.doi.org/10.1038/srep05951
32.
Y.-J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, Nano Lett. 9, 3430 (2009).
http://dx.doi.org/10.1021/nl901572a
33.
R. Yan, Q. Zhang, W. Li, I. Calizo, T. Shen, C. A. Richter, A. R. Hight-Walker, X. Liang, A. Seabaugh, D. Jena, H. G. Xing, D. J. Gundlach, and N. V. Nguyen, Appl. Phys. Lett. 101, 022105 (2012).
http://dx.doi.org/10.1063/1.4734955
34.
K. K. Kam and B. A. Parkinson, J. Phys. Chem. 86, 463 (1982).
http://dx.doi.org/10.1021/j100393a010
35.
E. Fortin and W. M. Sears, J. Phys. Chem. Solids 43, 881 (1982).
http://dx.doi.org/10.1016/0022-3697(82)90037-3
36.
W. Mönch, Semiconductor Surfaces and Interfaces, 3rd ed. ( Springer, Berlin, 2001).
37.
R. Schlaf, O. Lang, C. Pettenkofer, and W. Jaegermann, J. Appl. Phys. 85, 2732 (1999).
http://dx.doi.org/10.1063/1.369590
38.
W. Mönch, J. Appl. Phys. 109, 113724 (2011).
http://dx.doi.org/10.1063/1.3592978
39.
W. Mönch (unpublished).
40.
W. Mönch, J. Vac. Sci. Technol., B 17, 1867 (1999).
http://dx.doi.org/10.1116/1.590839
41.
W. Mönch, J. Appl. Phys. 111, 073706 (2012).
http://dx.doi.org/10.1063/1.3699180
42.
W. Mönch, “ Electronic properties of semiconductor interfaces,” in Handbook of Electronic and Photonic Materials, 2nd ed. ( Springer, Berlin, 2016).
43.
M. W. Allen and S. M. Durbin, Phys. Rev. B 82, 165310 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.165310
44.
L. N. Pauling, The Nature of the Chemical Bond ( Cornell University, Ithaca, NY, 1939).
45.
S. B. Zhang, M. L. Cohen, and S. G. Louie, Phys. Rev. B 34, 768 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.768
46.
W. Mönch, Mater. Sci. Semicond. Process. 28, 2 (2014).
http://dx.doi.org/10.1016/j.mssp.2014.03.024
47.
V. Heine, Phys. Rev. 138, A1689 (1965).
http://dx.doi.org/10.1103/PhysRev.138.A1689
48.
A. R. Miedema, P. F. de Châtel, and F. R. de Boer, Physica B 100, 1 (1980).
http://dx.doi.org/10.1016/0378-4363(80)90054-6
49.
W. Mönch, Appl. Phys. Lett. 93, 172118 (2008).
http://dx.doi.org/10.1063/1.3009283
50.
W. Mönch, Appl. Phys. Lett. 91, 042117 (2007).
http://dx.doi.org/10.1063/1.2760176
51.
Y.-C. Yeo, T.-J. King, and C. Hu, J. Appl. Phys. 92, 7266 (2002).
http://dx.doi.org/10.1063/1.1521517
52.
W. Mönch, J. Appl. Phys. 107, 013706 (2010).
http://dx.doi.org/10.1063/1.3275051
53.
W. Mönch, Phys. Rev. Lett. 58, 1260 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.1260
54.
W. Mönch, Appl. Surf. Sci. 92, 367 (1996).
http://dx.doi.org/10.1016/0169-4332(95)00257-X
55.
M. S. P. Reddy, A. A. Kumar, and V. R. Reddy, Thin Solid Films 519, 3844 (2011).
http://dx.doi.org/10.1016/j.tsf.2011.01.258
56.
N. N. K. Reddy and V. R. Reddy, Bull. Mater. Sci. 35, 53 (2012).
http://dx.doi.org/10.1007/s12034-011-0262-6
57.
B. Roul, T. N. Bhat, M. Kumar, M. K. Rajpalke, A. T. Kalghatgi, and S. B. Krupanidhi, Phys. Status Solidi A 209, 1575 (2012).
http://dx.doi.org/10.1002/pssa.201228237
58.
B. J. Skromme, E. Luckowski, K. Moore, M. Bhatanagar, C. E. Weitzel, T. Gehoski, and D. Ganser, J. Electron. Mater. 29, 376 (2000).
http://dx.doi.org/10.1007/s11664-000-0081-9
59.
F. Roccaforte, F. La Via, V. Raineri, R. Pierobon, and E. Zanoni, J. Appl. Phys. 93, 9137 (2003).
http://dx.doi.org/10.1063/1.1573750
60.
D. J. Ewing, L. M. Porter, Q. Wahab, X. Ma, T. S. Sudharshan, S. Tumakha, M. Gao, and L. J. Brillson, J. Appl. Phys. 101, 114514 (2007).
http://dx.doi.org/10.1063/1.2745436
61.
F. Giannazzo, F. Roccaforte, and V. Raineri, Microelectron. Eng. 84, 450 (2007).
http://dx.doi.org/10.1016/j.mee.2006.10.057
62.
S. Das, H.-Y. Chen, A. V. Penumatcha, and J. Appenzeller, Nano Lett. 13, 100 (2013).
http://dx.doi.org/10.1021/nl303583v
63.
N. Kaushik, A. Nipane, F. Basheer, S. Dubey, S. Grover, M. M. Deshmukh, and S. Lodha, Appl. Phys. Lett. 105, 113505 (2014).
http://dx.doi.org/10.1063/1.4895767
64.
R. F. Frindt and A. D. Yoffe, Proc. Roy. Soc. (London) A 273, 69 (1963).
http://dx.doi.org/10.1098/rspa.1963.0075
65.
Y. Guo and J. Robertson, Microelectron. Eng. 147, 184 (2015).
http://dx.doi.org/10.1016/j.mee.2015.04.069
66.
Y. Guo, D. Liu, and J. Robertson, ACS Appl. Mater. Interfaces 7, 25709 (2015).
http://dx.doi.org/10.1021/acsami.5b06897
67.
W. Hu, T. Wang, R. Zhang, and J. Yang, J. Mater. Chem. C 4, 1776 (2016).
http://dx.doi.org/10.1039/C6TC00207B
68.
A. Chanana and S. Mahapatra, J. Appl. Phys. 119, 014303 (2016).
http://dx.doi.org/10.1063/1.4938742
69.
C. Xia, B. Xue, T. Wang, Y. Peng, and Y. Jia, Appl. Phys. Lett. 107, 193107 (2015).
http://dx.doi.org/10.1063/1.4935602
70.
T. U. Kampen and W. Mönch, Surf. Sci. 331–333, 490 (1995).
http://dx.doi.org/10.1016/0039-6028(95)00079-8
71.
W. Mönch, Europhys. Lett. 27, 479 (1994).
http://dx.doi.org/10.1209/0295-5075/27/6/012
72.
S. Sonde, F. Giannazzo, V. Raineri, R. Yakimova, J.-R. Huntzinger, A. Tiberj, and J. Camassel, Phys. Rev. B 80, 241406 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.241406
73.
P. N. First, W. A. de Heer, T. Seyller, C. Berger, J. A. Stroscio, and J.-S. Moon, MRS Bull. 35, 296 (2010).
http://dx.doi.org/10.1557/mrs2010.552
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/10/10.1063/1.4962310
Loading
/content/aip/journal/jap/120/10/10.1063/1.4962310
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/10/10.1063/1.4962310
2016-09-08
2016-09-26

Abstract

Graphene-semiconductor contacts exhibit rectifying properties and, in this respect, they behave in exactly the same way as a “conventional” metal-semiconductor or Schottky contacts. It will be demonstrated that, as often assumed, the Schottky-Mott rule does not describe the reported barrier heights of graphene-semiconductor contacts. With “conventional” Schottky contacts, the same conclusion was reached already in 1940. The physical reason is that the Schottky-Mott rule considers no interaction between the metal and the semiconductor. The barrier heights of “conventional” Schottky contacts were explained by the continuum of metal-induced gap states (MIGSs), where the differences of the metal and semiconductor electronegativities describe the size and the sign of the intrinsic electric-dipoles at the interfaces. It is demonstrated that the MIGS-and-electronegativity concept unambiguously also explains the experimentally observed barrier heights of graphene Schottky contacts. This conclusion includes also the barrier heights reported for MoS Schottky contacts with “conventional” metals as well as with graphene.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/10/1.4962310.html;jsessionid=LtOJyytqj1A3GJLR3vmwnzvT.x-aip-live-02?itemId=/content/aip/journal/jap/120/10/10.1063/1.4962310&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/10/10.1063/1.4962310&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/10/10.1063/1.4962310'
Right1,Right2,Right3,